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CP Asymmetry in D decays

1 Introduction

The combined symmetry of charge conjugation and parity (CP ) is broken in the weak

interaction of the Standard Model by a single phase in the Cabibbo-Kobayashi-Maskawa

matrix [1, 2]. Physics beyond the Standard Model may reveal itself in the form of

additional sources of CP violation. In both the K0
and B0

systems CP violation has been

unambiguously observed, and is in agreement with the Standard Model predictions. In

contrast, CP violation in the charm sector has yet to be established. The amount of CP
violation in charm decays was generally expected to be much smaller than the 1% level

in the Standard Model [3, 4]. The LHCb collaboration, however, reported evidence with

3.5 standard deviations significance for direct CP violation in two-body, singly-Cabibbo-

suppressed D0
decays [5]. The difference in CP asymmetries between D0→ K−K+

and

D0→ π−π+
decays was found to be ∆ACP = (−0.82 ± 0.21 (stat) ± 0.11 (syst))%. This

result sparked a theoretical debate on whether or not this could be accommodated within

the Standard Model. For a comprehensive review see Ref. [6].

After the LHCb paper, the CDF and Belle collaborations presented measurements

of ∆ACP = (−0.62 ± 0.21 (stat) ± 0.10 (syst))% [7] and ∆ACP = (−0.87 ± 0.41 (stat) ±
0.06 (syst))% [8], respectively. These numbers are included in the average from the Heavy

Flavor Averaging Group (HFAG) [9], together with a previous measurement [10] from the

BaBar collaboration, yielding a world average of the difference in direct CP violation of

∆adirCP = (−0.68± 0.15)%.
1

In all previous results D∗+ → D0π+
decays

2
have been used as the source of the D0

sample, and the emitted pion was used to determine the flavour of the neutral D meson

(i.e., whether it is D0
or D0

). In this paper a measurement of ∆ACP is presented using D0

mesons produced in semileptonic b-hadron decays where the flavour of the neutral D meson

is tagged by the accompanying charged lepton. This approach provides an independent

determination of ∆ACP .

2 Method and formalism

The measured (raw) asymmetry for a D0
decay to a CP eigenstate f is defined as

Araw =
N(D0 → f)−N(D0 → f)

N(D0 → f) +N(D0 → f)
, (1)

where N denotes the observed yield for the given decay. The initial flavour of the neutral

D meson is tagged by the charge of the accompanying muon in the semileptonic b-hadron
(B) decay to the DµX final state. A positive muon is associated with a D0

meson, and a

negative muon with a D0
meson. The X denotes any other particle(s) produced in the

semileptonic B decay, which are not reconstructed (e.g., the neutrino).

1The relation between ∆ACP and ∆adirCP is explained in Sect. 6.
2The inclusion of charge-conjugated modes is implied throughout this paper, unless explicitly stated

otherwise.

1

The raw asymmetry can be written in terms of the D0
decay rate, Γ, the muon detection

efficiency, ε, and the D0
production rate in semileptonic b-hadron decays, P , as

Araw =
Γ(D0

)ε(µ−
)P(D0

)− Γ(D0
)ε(µ+

)P(D0
)

Γ(D0)ε(µ−)P(D0) + Γ(D0)ε(µ+)P(D0)
. (2)

Defining the CP asymmetry as ACP = (Γ(D0
) − Γ(D0

))/(Γ(D0
) + Γ(D0

)), the muon

detection asymmetry as Aµ
D = (ε(µ−

)−ε(µ+
))/(ε(µ+

)+ε(µ−
)), and the effective production

asymmetry as AB
P = (P(D0

) − P(D0
))/(P(D0

) + P(D0
)), the raw asymmetry can be

written to first order as

Araw ≈ ACP + Aµ
D + AB

P . (3)

The effective production asymmetry is due to different production rates of b- and b-hadrons
and also includes any effect due to semileptonic asymmetries in neutral B mesons. Both

detection and production asymmetries differ from those in the analyses using D∗±
decays,

where the D∗±
mesons are produced directly in the primary pp interaction. In these

“prompt” decays a possible detection asymmetry enters through the reconstruction of the

tagging pion, and the production asymmetry is that of the prompt D∗±
mesons.

By taking the difference between the raw asymmetries measured in the D0→ K−K+

and D0→ π−π+
decays the detection and production asymmetries cancel, giving a robust

measurement of the CP asymmetry difference

∆ACP = Araw(K
−K+

)− Araw(π
−π+

) ≈ ACP (K
−K+

)− ACP (π
−π+

) . (4)

Since the detection and the production depend on the kinematics of the process under

study, the cancellation is only complete when the kinematic distributions of the muon and

b-hadron are the same for both D0→ K−K+
and D0→ π−π+

. A weighting procedure is

used to improve the cancellation by equalising the kinematic distributions.

3 Detector and simulation

The LHCb detector [11] is a single-arm forward spectrometer covering the pseudorapidity

range 2 < η < 5, designed for the study of particles containing b or c quarks. The detector

includes a high-precision tracking system consisting of a silicon-strip vertex detector

surrounding the pp interaction region, a large-area silicon-strip detector located upstream

of a dipole magnet with a bending power of about 4Tm, and three stations of silicon-strip

detectors and straw drift tubes placed downstream. The polarity of the magnet is reversed

repeatedly during data taking, which causes all detection asymmetries that are induced by

the left–right separation of charged particles to change sign. The combined tracking system

has momentum resolution ∆p/p that varies from 0.4% at 5GeV/c to 0.6% at 100GeV/c,
and impact parameter resolution of 20µm for tracks with high transverse momentum.

Charged hadrons are identified using two ring-imaging Cherenkov detectors. Muons are

identified by a system composed of alternating layers of iron and multiwire proportional

chambers. The trigger [12] consists of a hardware stage, based on information from the

2

∆ACP ≈ ∆adir
CP
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Model independent analysis
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• At the effective field theory level we have:

ΔaCP and New Physics

• Assume SM does not saturate the experimental value

• Parametrize NP contributions in EFT normalized to the effective SM scale

• most general dim 6 Hamiltonian at µ < mW,t

Qq
1 = (ūq)V−A (q̄c)V−A

Qq
2 = (ūαqβ)V−A (q̄βcα)V−A ,

Qq
5 = (ūc)V−A (q̄q)V+A ,

Qq
6 = (ūαcβ)V−A (q̄βqα)V+A ,

Q7 = − e

8π2
mc ūσµν(1 + γ5)F

µν c ,

Q8 = − gs
8π2

mc ūσµν(1 + γ5)T
aGµν

a c ,

H
eff−NP
|∆c|=1 =

GF√
2

�

i

CNP
i Qi

+ Ops. with V↔A

x 5 qq flavor structures
_
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ΔaCP and New Physics

• Assume SM does not saturate the experimental value

• Parametrize NP contributions in EFT normalized to the effective SM scale

• for                           : 

∆aCP ≈ (0.13%)Im(∆RSM) + 9
�

i

Im(CNP
i ) Im(∆RNP

i )

Im(CNP
i ) =

v2

Λ2Im(CNDA)
(10 TeV)2

Λ2
NDA

=
(0.61± 0.17)− 0.12 Im(∆RSM)

Im(∆RNP)
.

Are such contributions allowed by other flavor constraints?

∆RNP
i ≡ GF√

2

�

f=π,K

�Qi�f
A(1)

f

keep track of the hadronic 
uncertainties...
0.1-0.2 as estimated using the tools 
in Kagan, etal. hep-ph/0609178
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• Possible bounds from other observables: D mixing, CPV in kaon system,...

• Dipole operators are allowed
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6 = (ūαcβ)V−A (q̄βqα)V+A ,

Q7 = − e

8π2
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• In TC theories techni-fermions break the EW dynamically �TT c� ∝ v3

• Fermion masses are generated by the ETC sector
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Fig. 1. Two equivalent ways of viewing how the technifermions communicate SU(2) X U(1) breaking to 
the ordinary fermions: (a) The technifermions act as constituents of the ordinary fermions and 
participate in an SU(2) x U(1) breaking condensate. Note that the fermion mass involves three powers 
of the technifermion condensate. (b) The fermions are viewed as mixing with technibatyons, which have 
a mass ma due to the W(2) x U(1) violating condensate. The mixing is proportional to I V’(O)l’, where 
Y(O) is the wave function of the technibaryon at the origin. In all graphs, arrows on fermion lines 

denote chirality flow. 

As discussed in sect. 1, the role of technicolor in the theory I am describing is not 
to do away with fundamental scalars, but rather to endow the SU(2) x U(1) 
breaking order parameter with nontrivial flavor structure at short distances. The 
parameter K in (2.1) is then given by the product of the Yukawa couplings, 
K = gh/4a. Similar interactions give rise to the f cTcTcTc operator. Note that the 
four-fermion operators in eq. (2.1) differ from those in ETC theories, which have 
the form (#c>(7F>t. 

The technicolor scale is set by the W-mass, with the result that FTC = lo* GeV, 
where FTC is the analogue of f, in QCD. The exact value needed for FTC 
depends on the number of technifermions in the model. The fermion mass mI 
arises as shown in fig. la, when the “constituents” T of the fermion f condense 
with the constituents T’ of the fermion f ‘. Equivalently, m, may be thought of as 
arising from mixing with the technibaryon B - TTT and its partner BC - TCTCTc, 
as in fig. lb. The composite operators create technibaryons with strength Ily(O)l*, 
which is the wave-function overlap of the technifermions in the technibaryon. This 
may be expressed by the substitution in the low-energy effective of technifermion 
fields by technibaryon fields: 

TTT+ l’P(0)1*B, TCTcTC + I?P(O)l*W. (2.3) 
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• We will apply this idea to the Composite Higgs scenario (Higgs=Pseudo NGB)



Partial Compositeness in CH models
• The idea of partial compositeness applied to the composite Higgs looks like:
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Figure 3: The contribution from the exchange of heavy modes to the Yukawas and to the FCNC operators.

the estimates that follow). The way out is again MFV, i.e. the conditions Y
u
1 ∝ Y

u
3 ∝ . . . and similarly

for the downs. Interestingly, this can be automatically enforced in PNGB composite Higgs models where

selection rules of the global group G can imply, at lowest order in the proto-Yukawa couplings, a factorized

flavor structure [11]
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�
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This feature eliminates the leading contribution to Higgs-mediated FCNC.

Now, in the composite 2HDM the issues exemplified by eq. (14) and eq. (15) will both be present, but

at the same time one will be able to rely, as explained above, on both, discrete symmetries or ansätze

and on G selection rules. Let us discuss in more detail how these mechanisms work and protect from

Higgs-mediated flavor transitions. As previously explained, the SM fermions are coupled linearly to the

strong sector through fermionic composite operators OfL,fR . The latter describe couplings at microscopic

scales, where the breaking G → H can be neglected, and therefore correspond to some representations of

G that we denote, respectively, as rL and rR. For one generation, eq. (2) can be rewritten more explicitly

as

Lmix = (f̄L)α(yL
α
)
IfLOIfL

+ (f̄R)(yR)
IfROIfR

+ h.c. , (17)

where the IfL and IfR indices of yL,R are in the conjugate representation of rL,R while α denotes the

SM SU(2)L-doublet index. As the notation suggests, in eq. (17) we have uplifted the yL,R couplings to

representations (spurions) of the G× SU(2)W × U(1)Y . This will allow us to exploit fully the constraints

from G-invariance.

Adding flavor to eq. (17), amounts to adding an index i to fL, yL, yR, OIfL
, OIfR

. Notice that in general

there is no notion of orthogonality for the composite operators, meaning that the correlator �Oi
IfL

O
j
IfL

� is
in general non zero for any i, j pair (similarly for Oi

IfR
). Effective Yukawa couplings, in principle of the

general form of eqs. (14) and (15), arise at low energy via the exchange of the heavy modes excited by

OfL,fR – see fig. 3. By applying power counting as depicted in the figure, we expect for the Y
ij
1 , Y

ij
2 and

13

Lelem = ifγµDµf

Lcomp = Lcomp(gρ, mρ, H)

Lmix = �L fLOL + �L fROR + h.c.

Y ij = cij �i
L�j

R gρ
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Partial Compositeness in CH models
• The idea of partial compositeness applied to the composite Higgs looks like:

H

εL

εR

fL

fR

gρ

εL

εR

fL

fR

gρ fL

fR

gρ

1/m2
ρ

εL

εR

Figure 3: The contribution from the exchange of heavy modes to the Yukawas and to the FCNC operators.

the estimates that follow). The way out is again MFV, i.e. the conditions Y
u
1 ∝ Y

u
3 ∝ . . . and similarly

for the downs. Interestingly, this can be automatically enforced in PNGB composite Higgs models where

selection rules of the global group G can imply, at lowest order in the proto-Yukawa couplings, a factorized

flavor structure [11]

q̄L
�
Y

u
1 H̃Fu(H

†
H/f

2
)
�
uR + q̄L

�
Y

d
1 HFd(H

†
H/f

2
)
�
dR + h.c. . (16)

This feature eliminates the leading contribution to Higgs-mediated FCNC.

Now, in the composite 2HDM the issues exemplified by eq. (14) and eq. (15) will both be present, but

at the same time one will be able to rely, as explained above, on both, discrete symmetries or ansätze

and on G selection rules. Let us discuss in more detail how these mechanisms work and protect from

Higgs-mediated flavor transitions. As previously explained, the SM fermions are coupled linearly to the

strong sector through fermionic composite operators OfL,fR . The latter describe couplings at microscopic

scales, where the breaking G → H can be neglected, and therefore correspond to some representations of

G that we denote, respectively, as rL and rR. For one generation, eq. (2) can be rewritten more explicitly

as

Lmix = (f̄L)α(yL
α
)
IfLOIfL

+ (f̄R)(yR)
IfROIfR

+ h.c. , (17)

where the IfL and IfR indices of yL,R are in the conjugate representation of rL,R while α denotes the

SM SU(2)L-doublet index. As the notation suggests, in eq. (17) we have uplifted the yL,R couplings to

representations (spurions) of the G× SU(2)W × U(1)Y . This will allow us to exploit fully the constraints

from G-invariance.

Adding flavor to eq. (17), amounts to adding an index i to fL, yL, yR, OIfL
, OIfR

. Notice that in general

there is no notion of orthogonality for the composite operators, meaning that the correlator �Oi
IfL

O
j
IfL

� is
in general non zero for any i, j pair (similarly for Oi

IfR
). Effective Yukawa couplings, in principle of the

general form of eqs. (14) and (15), arise at low energy via the exchange of the heavy modes excited by

OfL,fR – see fig. 3. By applying power counting as depicted in the figure, we expect for the Y
ij
1 , Y

ij
2 and

13

Lelem = ifγµDµf

Lcomp = Lcomp(gρ, mρ, H)

Lmix = �L fLOL + �L fROR + h.c.

H

εL

εR

fL

fR

gρ

εL

εR

fL

fR

gρ fL

fR

gρ

1/m2
ρ

εL

εR

Figure 3: The contribution from the exchange of heavy modes to the Yukawas and to the FCNC operators.

the estimates that follow). The way out is again MFV, i.e. the conditions Y
u
1 ∝ Y

u
3 ∝ . . . and similarly

for the downs. Interestingly, this can be automatically enforced in PNGB composite Higgs models where

selection rules of the global group G can imply, at lowest order in the proto-Yukawa couplings, a factorized

flavor structure [11]

q̄L
�
Y

u
1 H̃Fu(H

†
H/f

2
)
�
uR + q̄L

�
Y

d
1 HFd(H

†
H/f

2
)
�
dR + h.c. . (16)

This feature eliminates the leading contribution to Higgs-mediated FCNC.

Now, in the composite 2HDM the issues exemplified by eq. (14) and eq. (15) will both be present, but

at the same time one will be able to rely, as explained above, on both, discrete symmetries or ansätze

and on G selection rules. Let us discuss in more detail how these mechanisms work and protect from

Higgs-mediated flavor transitions. As previously explained, the SM fermions are coupled linearly to the

strong sector through fermionic composite operators OfL,fR . The latter describe couplings at microscopic

scales, where the breaking G → H can be neglected, and therefore correspond to some representations of

G that we denote, respectively, as rL and rR. For one generation, eq. (2) can be rewritten more explicitly

as

Lmix = (f̄L)α(yL
α
)
IfLOIfL

+ (f̄R)(yR)
IfROIfR

+ h.c. , (17)

where the IfL and IfR indices of yL,R are in the conjugate representation of rL,R while α denotes the

SM SU(2)L-doublet index. As the notation suggests, in eq. (17) we have uplifted the yL,R couplings to

representations (spurions) of the G× SU(2)W × U(1)Y . This will allow us to exploit fully the constraints

from G-invariance.

Adding flavor to eq. (17), amounts to adding an index i to fL, yL, yR, OIfL
, OIfR

. Notice that in general

there is no notion of orthogonality for the composite operators, meaning that the correlator �Oi
IfL

O
j
IfL

� is
in general non zero for any i, j pair (similarly for Oi

IfR
). Effective Yukawa couplings, in principle of the

general form of eqs. (14) and (15), arise at low energy via the exchange of the heavy modes excited by

OfL,fR – see fig. 3. By applying power counting as depicted in the figure, we expect for the Y
ij
1 , Y

ij
2 and

13

• Flavor violation beyond the CKM one is generated:

∼
g2

ρ

m2
ρ

�i
L�i

R�j
L�j

R
FV related to the 
SM one but not in 

the Minimal FV way

Is it possible to generate CPV in the charm sector and 
be safe with respect to the other dangerous processes? 

Y ij = cij �i
L�j

R gρ



Yukawa (quark sector)
• Yukawas are given by 

�ai to reproduce the SM masses and would thus lead to larger effects in flavor-violating processes,

e.g. in meson-meson mixing. We will emphasize in section 3 that in order to avoid danger-

ous tree-level Higgs corrections to ∆F = 2 processes it helps to realize the Higgs as a pseudo

Nambu-Goldstone boson (NGB) of the strong sector.

The NDA Lagrangian (2.2) predicts the following structure for the SM Yukawa matrices of the

up and down quarks:

(Yu)ij ∼ gρ�
q
i �

u
j , (Yd)ij ∼ gρ�

q
i �

d
j . (2.4)

(We use ∼ throughout the text to indicate that the equalities hold up to unknown O(1) matrices

in flavor space.) Eq. (2.4) suggests that the non-trivial hierarchies of the SM fermion masses could

follow from hierarchical mixing parameters �ai , as anticipated above. Taking as a phenomenological

input �a1 < �a3 < �a3, and keeping only the leading terms in the expansion, the Yukawa matrices can

be straightforwardly diagonalized by unitary matrices:

(Lu)ij ∼ (Ld)ij ∼ min

�
�qi
�qj
,
�qj
�qi

�
, (Ru,d)ij ∼ min

�
�u,di

�u,dj

,
�u,dj

�u,di

�
. (2.5)

The resulting quark masses, renormalized at the scale mρ, read m
u,d
i = y

u,d
i v, with:

(L
†
uYuRu)ij = gρ�

u
i �

q
i δij ≡ y

u
i δij , (L

†
dYdRd)ij = gρ�

d
i �

q
i δij ≡ y

d
i δij , (2.6)

and v(mZ) � 174 GeV.

Furthermore, noticing that VCKM = L
†
dLu ∼ Lu,d we see that the present framework can

naturally explain the hierarchical structure of the mixing matrix provided that:

�q1
�q2

∼ λ
�q2
�q3

∼ λ2 �q1
�q3

∼ λ3
, (2.7)

where λ � 0.22 is the Cabibbo angle. In the following we assume that the approximate equalities

in (2.7) hold. With these identifications the mixing parameters of the left-handed quarks are

completely determined up to an overall normalization factor, whereas the �u,di ’s are constrained

by (2.6):

�u,di

�u,dj

=
y
u,d
i

y
u,d
j

�qj
�qi
. (2.8)

We are thus left with two free parameters that can be �q3 and �u3 or equivalently one of the two

and gρ.

The above discussion generalizes to the lepton sector, with the important difference that the

neutrinos are much lighter than the charged leptons. As a consequence, it is plausible that the

neutrino masses come from a different source, and there is more arbitrariness in the determination

of the �ai ’s.
In fact there is overwhelming experimental evidence indicating that the mixing matrix VPMNS =

L†
eLν is non-hierarchical. Because this latter feature generically occurs whenever Lν is anarchic,

and whatever the structure of the charged lepton matrix is, we argue that in order to accommo-

date current data in the lepton sector it suffices to generate hierarchical Yukawa couplings for the

charged leptons:

(Ye)ij ∼ gρ�
�
i�

e
j , (2.9)

3
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q
i δij ≡ y

d
i δij , (2.6)

and v(mZ) � 174 GeV.

Furthermore, noticing that VCKM = L
†
dLu ∼ Lu,d we see that the present framework can

naturally explain the hierarchical structure of the mixing matrix provided that:
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�q2
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∼ λ2 �q1
�q3

∼ λ3
, (2.7)

where λ � 0.22 is the Cabibbo angle. In the following we assume that the approximate equalities

in (2.7) hold. With these identifications the mixing parameters of the left-handed quarks are

completely determined up to an overall normalization factor, whereas the �u,di ’s are constrained

by (2.6):

�u,di

�u,dj
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i

y
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j

�qj
�qi
. (2.8)

We are thus left with two free parameters that can be �q3 and �u3 or equivalently one of the two

and gρ.

The above discussion generalizes to the lepton sector, with the important difference that the

neutrinos are much lighter than the charged leptons. As a consequence, it is plausible that the

neutrino masses come from a different source, and there is more arbitrariness in the determination

of the �ai ’s.
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L†
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2 Partial Compositeness

Let us start by briefly reviewing the paradigm of Partial Compositeness, and how this idea can
be used to explain the SM flavor hierarchy. The basic assumption is that at the UV cutoff ΛUV

the SM fermions fa

i
couple linearly to operators Oa

i
of a confining, flavorful sector:

λa

i
fa

i
O

a

i
, (2.1)

where hereafter a, b, · · · = q, u, d, �, e and i, j, · · · = 1, 2, 3 denote flavor and family indices, respec-
tively. In addition to (2.1) the two sectors communicate via the weak gauging of the SM group,
taken to be a subgroup of the chiral symmetry of the new dynamics.

Using naive dimensional analysis (NDA), and adopting the notation of [35], one finds that
the low energy effective Lagrangian renormalized at the confinement scale mρ of the flavor sector
schematically reads:

LNDA =
m4

ρ

g2ρ

�
L

(0)

�
gρ�ai f

a

i

m3/2
ρ

,
Dµ

mρ
,
gρH

mρ

�
+

g2ρ
16π2

L
(1)

�
gρ�ai f

a

i

m3/2
ρ

,
Dµ

mρ
,
gρH

mρ

�
+ . . .

�
(2.2)

where λa

i
(mρ) = gρ�ai , and the L(n)’s are O(1) functions.

The form (2.2) follows from the assumption that the only mass scale of the problem is mρ

and that all the couplings among the resonances of the flavor sector can be parametrized by a
single parameter gρ. One can equivalently derive (2.2) by first matching the UV theory with a low
energy Lagrangian for the composites of masses ∼ mρ. In this case the leading term L(0) would
arise from the tree-level exchange of the resonances, whereas the remainder from loop processes.

While in generic theories L(0) already contains all possible operators compatible with the
symmetries, it turns out that in all known tractable realizations the resonance spectrum is such
that the dipole operators first arise at 1-loop from L(1). In the following we will assume this is the
case.

The spurions �a
i
� 1 measure the amount of compositeness of the field fa

i
, and are such that

for �a
i
∼ 1 the corresponding SM fermion can be interpreted as a fully composite, massless state.

We will see shortly that the SM mass hierarchy can elegantly arise in theories where the �a
i
’s are

hierarchical. One can justify the existence of a hierarchy among the flavor-violating parameters
�a
i
if one postulates that the operators Oa

i
have large, flavor-dependent scaling dimensions ∆a

i
=

5/2 + δa
i
∼ 5/2 at the UV cutoff. In this case we expect:

gρ�
a

i
= λa

i
(mρ) ∼ λa

i
(ΛUV)

�
mρ

ΛUV

�δai

, (2.3)

and hence for δa
i
= O(1) hierarchical relations can arise in the deep IR even when the λa

i
’s

are generic, anarchic matrices in the UV. More generally, a controllable explanation of the SM
fermion hierarchy can only be given when ΛUV � mρ, since when ΛUV ∼ mρ the hierarchy merely
represents an assumption on the unknown cutoff theory rather than a prediction of the framework.

In general, also the Higgs doublet should be accompanied by the corresponding “composite-
ness” parameter �H . This quantity does not appear in LNDA since we have taken H to be fully
composite, and accordingly set �H = 1 in (2.2). From a genuinely phenomenological perspective,
the assumption of a weakly coupled Higgs at the scale mρ would require larger mixing parameters
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and a non-hierarchical neutrino mass matrix such that Lν = Oij(1).
In models where, in complete analogy with the quark sector, the strong dynamics is responsible

for the generation of a Dirac neutrino mass matrix one finds that Lν ∼ L� ∼ VPMNS is the natural
prediction. This scenario leads to a complete determination of ��i/�

�
j ∼ 1 and �ei/�

e
j ∼ me

i/m
e
j .

On the other hand, there is much more freedom in models where the neutrino mass matrix is
dominantly generated by couplings involving a SM bilinear, rather than the mixing operators
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which case the leading mass operator would be of the form:
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∼ Yij

�
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�∆−2 LiHLjH

ΛUV
(2.11)

thus realizing the standard see-saw mechanism when ∆ � 2. Similarly, if the neutrinos are Dirac,
by making the mixing parameters �νi for the right-handed neutrinos negligibly small, the dominant
contribution to the mass matrix would come from higher dimensional operators involving Liνj at
the UV scale [36]. In either case we see that the only constraints imposed on the parameters ��,ei
are given in (2.9).

Although ��i/�
�
j as well as �

e,�
3 are effectively free-parameters, we will see that the phenomenolog-

ically most favorable scenario is that where the left-right and right-left transitions are comparable
in magnitude. This is realized when:
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�
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j

. (2.12)

3 Flavor Violation in Composite Higgs Models

We now consider the case of Partial Compositeness in a generic Composite Higgs model.
An inspection of (2.2) reveals that the main short-distance sources of flavor-violation in these
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L∆F=1 ∼ �ai �
b
jgρ
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m2
ρ

g2ρ
(4π)2

f
a
i σµνgSMF

µν
SMf

b
j (3.1)

+ �ai �
b
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m2

ρ

f
a
i γ

µf b
j iH

†←→D µH

L∆F=2 ∼ �ai �
b
j�

c
k�

d
l

g2ρ
m2

ρ

f
a
i γ

µf b
j f

c
kγµf

d
l

where gSMF
µν
SM is the coupling and field strength of any of the SM gauge groups. (Note that

insertions of gSMF
µν
SM = −i[Dµ, Dν ] are counted like two derivatives and that, as anticipated
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fermion hierarchy can only be given when ΛUV � mρ, since when ΛUV ∼ mρ the hierarchy merely
represents an assumption on the unknown cutoff theory rather than a prediction of the framework.

In general, also the Higgs doublet should be accompanied by the corresponding “composite-
ness” parameter �H . This quantity does not appear in LNDA since we have taken H to be fully
composite, and accordingly set �H = 1 in (2.2). From a genuinely phenomenological perspective,
the assumption of a weakly coupled Higgs at the scale mρ would require larger mixing parameters

2

• Use Naive Dimensional Analysis to estimate the Wilson 



Effective Lagrangian

below (2.2), we assumed that the dipole operators first arise at 1-loop, while the others can be
generated at tree level.)

Since our main focus are the dipole operators, we find it convenient to define:

Λ =
4π

gρ
mρ. (3.2)

Using this definition, and including the O(1) numbers suppressed in (3.1), we rewrite the above
operators as:

L∆F=1 = �ai �
b
jgρv

cabij,gSM
Λ2

f
a
i σµνgSMF

µν
SMf

b
j (3.3)

+ �ai �
b
jg

2
ρ

(4π)2

g2ρ

cabij
Λ2

f
a
i γ

µf b
j iH†←→D µH (3.4)

L∆F=2 = �ai �
b
j�

c
k�

d
l g

2
ρ

(4π)2

g2ρ

cabcdijkl

Λ2
f
a
i γ

µf b
j f

c
kγµf

d
l . (3.5)

Clearly, given �ai �
b
jgρ and Λ, the case of strong coupling gρ ∼ 4π is phenomenologically the most

favorable one.
There are additional contributions to flavor-violation arising from the dimension-6 operators

f
a
i γµf

b
jDνF

µν
SM and f

a
iHf b

jH
†H. (3.6)

The former lead to FCNC effects that are suppressed by a factor ∼ g2SM/g
2
ρ compared to those

induced by those in (3.4), and are hence neglected. On the other hand, the latter generally imply
important, long distance contributions to ∆F = 2 transitions if the coefficients are not aligned
with the Yukawas and the Higgs is light. Indeed, integrating out the Higgs we find that the ratio
of the long distance over the short distance contribution (3.5) scales as:

g4ρv
4

m2
ρm

2
h

≈ 15
� gρ
4π

�2
�
10 TeV

Λ

�2 �125 GeV

mh

�2

. (3.7)

Therefore, for gρ ∼ 4π the Higgs exchange generically gives the dominant contribution to meson-
meson mixing in these scenarios. This problem can be avoided in models where the Higgs is a
pseudo-NGB, in which case a careful embedding of the SM fermions in the chiral symmetry of
the strong sector forces the Higgs couplings to align with the Yukawa matrix, thus avoiding the
above issue [37]. In the following we will assume that this mechanism is at play. Notice that this
alignment will be inevitably spoiled by subleading corrections giving contributions that scale like
(3.7) with an extra suppression factor of order (yt/4π)2, and thus under control.

There are also flavor-conserving operators beyond those in (3.1) that are phenomenologically
relevant, such as H†WµνHBµν and |H†DµH|2. These contribute to the electroweak parameters
and will be discussed in Appendix B.

3.1 The CP Asymmetry in D Meson Decays

Let us now turn to the direct CP asymmetry in D meson decays. As discussed in [12] and [18], the
best candidates for producing a sizable effect in the charm sector, while being consistent with the

5

• As a reference value we take

other flavor constraints, are the ∆C = 1 chromomagnetic operators. Consider then the relevant

effective Hamiltonian:

Heff =
GF√
2

�
C8

mc

4π2
uLσ

µν
gsGµνcR + C

�
8

mc

4π2
uRσ

µν
gsGµνcL

�
. (3.8)

Matching the above theory with (2.2) at the scale µ ∼ mρ gives:

C8(mρ) = c
qu
12,g

4π2
√
2

GFΛ2
λ. (3.9)

Notice that the coefficient c
qu
12,g is naturally expected to be of O(1) in our context. The coefficient

C �
8 is suppressed by a factor mu/mcλ2 ∼ 5% compared to C8 and will be neglected in our analysis.

At leading order in the QCD coupling, running the Wilson coefficient to a scale µ < mρ amounts

to taking:

C8(µ) ≈ C8(mρ)× ηγ
(0)/2β0 , (3.10)

where η is the ratio between the strong coupling at the scale mρ and at the scale µ, γ(0)
= 28/3

(see, e.g., [38]), and β0 = 11−2Nf/3 is a step function of the number Nf of active flavors. Finally,

following [12][18] we write:

∆aCP ≈ −(0.13%)Im(∆R
SM

)− 9 Im(C8(1 GeV))Im(∆R
NP

) (3.11)

≈ −(0.13%)Im(∆R
SM

)− 0.65%

�
10 TeV

Λ

�2 �
Im(c

qu
12,g)

0.8

�
Im(∆RNP

)

0.2
,

where ∆RSM,NP
is the ratio between the hadronic matrix elements of the subdominant SM or

new physics operator and the dominant SM contribution. A naive, perturbative estimate gives

∆RSM ∼ αs/π ∼ 0.1, while perhaps a more conservative one would be ∆RSM ∼ 1. The value

Im(∆RNP
) ∼ 0.2 was estimated in [18], where the factorization tools developed in [10] were

employed.

In order to reproduce the observed value (1.1) one needs either an enhanced SM contribution

∆RSM ∼ 5, or a large new physics contribution, as shown in Fig. 1. Here we assume that ∆aCP

is saturated by physics beyond the SM, and choose:

Λ = 10 TeV, Im(c
qu
12,g) ∼ 1 . (3.12)

It is important to emphasize that our conclusions will necessarily be affected by the large system-

atic uncertainty associated with the long distance QCD effects encoded in the matrix elements

∆RSM,NP
.

Having fixed the scale Λ according to (3.12), we then consider the bounds on the dimensionless

coefficients cabij,SM, c
ab
ij , and cabcdijkl (evaluated at the scale ∼ mρ) of the other flavor-violating opera-

tors (3.3)–(3.5). We summarize our results in Table 1, referring to Appendix B for details. The

reader should keep in mind that the coefficients of (3.3)–(3.5) have NDA values O(1), therefore

values much smaller than one can only be accounted for by additional, non-generic assumptions

on the UV dynamics.

For the case of quark flavor violation, the compatibility with the experimental data is basically

guaranteed by the structure (3.3)–(3.5) for a maximally strong sector gρ ∼ 4π. Some moderate
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below (2.2), we assumed that the dipole operators first arise at 1-loop, while the others can be
generated at tree level.)

Since our main focus are the dipole operators, we find it convenient to define:

Λ =
4π

gρ
mρ. (3.2)

Using this definition, and including the O(1) numbers suppressed in (3.1), we rewrite the above
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b
jgρ and Λ, the case of strong coupling gρ ∼ 4π is phenomenologically the most

favorable one.
There are additional contributions to flavor-violation arising from the dimension-6 operators
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The former lead to FCNC effects that are suppressed by a factor ∼ g2SM/g
2
ρ compared to those

induced by those in (3.4), and are hence neglected. On the other hand, the latter generally imply
important, long distance contributions to ∆F = 2 transitions if the coefficients are not aligned
with the Yukawas and the Higgs is light. Indeed, integrating out the Higgs we find that the ratio
of the long distance over the short distance contribution (3.5) scales as:
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Therefore, for gρ ∼ 4π the Higgs exchange generically gives the dominant contribution to meson-
meson mixing in these scenarios. This problem can be avoided in models where the Higgs is a
pseudo-NGB, in which case a careful embedding of the SM fermions in the chiral symmetry of
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8 is suppressed by a factor mu/mcλ2 ∼ 5% compared to C8 and will be neglected in our analysis.
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It is important to emphasize that our conclusions will necessarily be affected by the large system-

atic uncertainty associated with the long distance QCD effects encoded in the matrix elements
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.

Having fixed the scale Λ according to (3.12), we then consider the bounds on the dimensionless

coefficients cabij,SM, c
ab
ij , and cabcdijkl (evaluated at the scale ∼ mρ) of the other flavor-violating opera-

tors (3.3)–(3.5). We summarize our results in Table 1, referring to Appendix B for details. The

reader should keep in mind that the coefficients of (3.3)–(3.5) have NDA values O(1), therefore

values much smaller than one can only be accounted for by additional, non-generic assumptions

on the UV dynamics.

For the case of quark flavor violation, the compatibility with the experimental data is basically

guaranteed by the structure (3.3)–(3.5) for a maximally strong sector gρ ∼ 4π. Some moderate
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Quark sector
Operator ∆F = 2 Re(c)× (4π/gρ)2 Im(c)× (4π/gρ)2 Observables

(s̄Lγµ
dL)

2 6× 102
�

�u3
�q3

�2
2

�
�u3
�q3

�2
∆mK ; �K [44][45]

(s̄RdL)
2 500 2 ”

(s̄R dL)(s̄LdR) 2× 102 0.6 ”

(c̄Lγµ
uL)

2 4× 102
�

�u3
�q3

�2
70

�
�u3
�q3

�2
∆mD; |q/p|,φD [44][45]

(c̄L uR)
2 30 6 ”

(c̄R uL)(c̄LuR) 3× 102 50 ”

(b̄Lγµ
dL)

2 5

�
�u3
�q3

�2
2

�
�u3
�q3

�2
∆mBd

; SψKS [44][45]

(b̄R dL)
2 80 30 ”

(b̄R dL)(b̄LdR) 3× 102 80 ”

(b̄Lγµ
sL)

2 6

�
�u3
�q3

�2
∆mBs [44][45]

(b̄R sL)
2 1× 102 ”

(b̄R sL)(b̄LsR) 3× 102 ”

Operator ∆F = 1 Re(c) Im(c) Observables

sRσµν
eFµνbL 1 B → Xs [46]

sLσµν
eFµνbR 2 9 ”

sRσµν
gsGµνdL - 0.4 K → 2π; ��/� [47]

sLσµν
gsGµνdR - 0.4 ”

s̄Lγµ
bL H

†
i
←→
D µH 30

� gρ
4π

�2
(�u3)

2
Bs → µ

+
µ
− [48]

s̄Lγµ
bL H

†
i
←→
D µH 6

� gρ
4π

�2
(�u3)

2 10
� gρ
4π

�2
(�u3)

2
B → Xs �+�− [46]

Operator ∆F = 0 Re(c) Im(c) Observables

dσµν
eFµνdL,R - 3× 10−2 neutron EDM [49][50]

uσµν
eFµνuL,R - 0.3 ”

dσµν
gsGµνdL,R - 4× 10−2 ”

uσµν
gsGµνuL,R - 0.2 ”

b̄Lγµ
bL H

†
i
←→
D µH 5

� gρ
4π

�2
(�u3)

2
Z → bb̄ [51]

Leptonic Operator Re(c) Im(c) Observables

eσµν
eFµνeL,R - 5× 10−2 electron EDM [52]

µσµν
eFµνeL,R 4× 10−3

µ → eγ [53]

ēγµ
µL,R H

†
i
←→
D µH 1.5

� gρ
4π

� �e3
��3

µ(Au) → e(Au) [54]

Table 1: Upper bounds on the dimensionless coefficients of the operators in the notation (3.3)–(3.5),
with Λ = 4πmρ/gρ = 10 TeV. The bound is on the coefficients renormalized at 10 TeV, and we
report the strongest ones. To minimize the constraints in the lepton sector we assumed (2.12). The
experimental bounds are taken from the references in the third column. See Appendix B for details.
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gsGµνdL - 0.4 K → 2π; ��/� [47]

sLσµν
gsGµνdR - 0.4 ”

s̄Lγµ
bL H

†
i
←→
D µH 30

� gρ
4π

�2
(�u3)

2
Bs → µ

+
µ
− [48]

s̄Lγµ
bL H

†
i
←→
D µH 6

� gρ
4π

�2
(�u3)

2 10
� gρ
4π

�2
(�u3)

2
B → Xs �+�− [46]

Operator ∆F = 0 Re(c) Im(c) Observables

dσµν
eFµνdL,R - 3× 10−2 neutron EDM [49][50]
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bL H

†
i
←→
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� gρ
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�2
(�u3)

2
Z → bb̄ [51]

Leptonic Operator Re(c) Im(c) Observables

eσµν
eFµνeL,R - 5× 10−2 electron EDM [52]

µσµν
eFµνeL,R 4× 10−3

µ → eγ [53]

ēγµ
µL,R H

†
i
←→
D µH 1.5

� gρ
4π

� �e3
��3

µ(Au) → e(Au) [54]

Table 1: Upper bounds on the dimensionless coefficients of the operators in the notation (3.3)–(3.5),
with Λ = 4πmρ/gρ = 10 TeV. The bound is on the coefficients renormalized at 10 TeV, and we
report the strongest ones. To minimize the constraints in the lepton sector we assumed (2.12). The
experimental bounds are taken from the references in the third column. See Appendix B for details.
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(s̄Lγµ
dL)

2 6× 102
�

�u3
�q3

�2
2

�
�u3
�q3

�2
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Table 1: Upper bounds on the dimensionless coefficients of the operators in the notation (3.3)–(3.5),
with Λ = 4πmρ/gρ = 10 TeV. The bound is on the coefficients renormalized at 10 TeV, and we
report the strongest ones. To minimize the constraints in the lepton sector we assumed (2.12). The
experimental bounds are taken from the references in the third column. See Appendix B for details.
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Operator ∆F = 0 Re(c) Im(c) Observables
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eFµνdL,R - 3× 10−2 neutron EDM [49][50]

uσµν
eFµνuL,R - 0.3 ”
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Table 1: Upper bounds on the dimensionless coefficients of the operators in the notation (3.3)–(3.5),
with Λ = 4πmρ/gρ = 10 TeV. The bound is on the coefficients renormalized at 10 TeV, and we
report the strongest ones. To minimize the constraints in the lepton sector we assumed (2.12). The
experimental bounds are taken from the references in the third column. See Appendix B for details.

9

mρ = 10 TeV gρ = 4π

• Not excluded, given the 
uncertainties 

• Close to the current 
sensitivity



SUSY
•  As usual in SUSY case, it is possible to define the mass insertions

from:

L∆F=1 ∼ �ai �
b
jgρv

1

Λ2
f
a
i σµνgSMF

µν
SMf

b
j (4.5)

+ �ai �
b
jg

2
ρ

g2SM
g2ρ

1

Λ2
f
a
i γ

µf b
j iH

†←→D µH

L∆F=2 ∼ �ai �
b
j�

c
k�

d
l g

2
ρ

g2SM
g2ρ

1

Λ2
f
a
i γ

µf b
j f

c
kγµf

d
l

For a fixed Λ, the above structure is formally identical to (3.3)–(3.5) provided one replaces 4π/gρ →
gSM/gρ. The two realizations will therefore lead to comparable predictions if we set gρ ∼ 4π in the
models of Section 2 and assume gρ ∼ gSM in the SUSY model. More generally, however, we expect
that when gρ � gSM in (4.5) the flavor violating processes mediated by ∆F = 2 and penguin
operators will be parametrically suppressed compared to the non-SUSY case.

To quantitatively assess flavor violation in the present model we find it convenient to employ
the mass insertion approximation in the notation of [59]. We thus rotate the superfields into the
basis where the Yukawas are diagonal via the unitary matrices (2.5). The structure one obtains
is still the same as in (4.1), and we define:

(δu,dij )LL = (cu,dij )LL × m̃2
0

m̃2
�qi �

q
j , (δu,dij )RR = (cu,dij )RR × m̃2

0

m̃2
�u,di �u,dj ,

(δu,dij )LR = (cu,dij )LR × gρ �
q
i �

u,d
j

vu,d A0

m̃2
, (δu,dij )RL = (cu,dij )RL × gρ �

u,d
i �qj

vu,d A0

m̃2
, (4.6)

where vu = v sin β and vd = v cos β with v ≈ 174 GeV, while (cfij)LR,RL are coefficients with NDA
value O(1). Analogous expressions hold for the lepton sector, and will not be reproduced here for
brevity.

In writing (4.6) we neglected the contribution of the µ term in the family-diagonal LR in-
sertions, which can be relevant when tanβ is large even for µ < A0. Although these terms can
be phenomenologically relevant, for example in setting bounds on the phase of the µ term times
gaugino masses, we do not consider them here since they do not provide direct constraints on the
coefficients (cfij)LR,RL defined in (4.6).

In the regime gρ � 1 the largest chirality-violating contributions always come from single
(δij)LR insertions, while the triple insertions of the type (δi3)LL(δ33)LR(δ3j)RR provide subleading
corrections. In the opposite limit, gρ ∼ yt, one requires �q,u3 ∼ 1 in order to reproduce the
correct top mass value, and finds that the diagonal top squark masses receive an unsuppressed
flavor-violating contribution, �

m2
q,u

�
33

∼ m̃2 + m̃2
0, (4.7)

which can either add up or cancel against the flavor universal one. This possibility can be used
to realize the so called split-families ansatz in a corner of the parameter space of flavorful SUSY.
In this limit (δu33)LL(RR) are O(1) while (δu33)LR is still smaller than 1 as long as (mq,u)33 > mt.
In order to make the mass insertion approximation well-defined it is thus sufficient to define the
stop propagators including the full m2

33 mass in eq.(4.7) and not just the flavor universal term.
In this way the former conclusions about the hierarchy between single and multiple insertions are
still valid, and we only expect O(1) modifications in our numerical results.
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value O(1). Analogous expressions hold for the lepton sector, and will not be reproduced here for
brevity.

In writing (4.6) we neglected the contribution of the µ term in the family-diagonal LR in-
sertions, which can be relevant when tanβ is large even for µ < A0. Although these terms can
be phenomenologically relevant, for example in setting bounds on the phase of the µ term times
gaugino masses, we do not consider them here since they do not provide direct constraints on the
coefficients (cfij)LR,RL defined in (4.6).

In the regime gρ � 1 the largest chirality-violating contributions always come from single
(δij)LR insertions, while the triple insertions of the type (δi3)LL(δ33)LR(δ3j)RR provide subleading
corrections. In the opposite limit, gρ ∼ yt, one requires �q,u3 ∼ 1 in order to reproduce the
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•  The asymmetry in the charm sector is given by 
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Figure 2: Central value and 1σ band for the size of m̃
�

m̃/A0Im(cu12)LR required in order to repro-

duce (1.1) as a function of the SM contribution and taking Im(∆RNP ) = 0.2, see Eq. (4.9).

As argued below Eq. (4.5), and recently emphasized in [18], left-right transitions will play an

important role in our analysis. Interestingly, Partial Compositeness implies that their off-diagonal
structure is automatically the same as that of the Yukawa’s, though not necessarily aligned, such

that we can write Au,d
ij ∝ mu,d

j �qi/�
q
j . In this sense, the present framework can be seen as a concrete

realization of the scenario dubbed ‘disoriented A-terms’ in [18], and explicitly designed to generate

the observad ∆aCP in the D meson decays.

4.1 The CP Asymmetry in D Meson Decays

We are now ready to see which region of the parameter space is favored by the LHCb result. The

dominant contribution to the direct CP asymmetry (1.1) is again induced by the chromomagnetic

operator of (3.8). Analogously to the non-SUSY scenario, the coefficient C �
8 is suppressed by

a factor (δu12)RL/(δu12)LR ∼ mu/mcλ2 ∼ 5% compared to C8 and can hence be neglected. The

relevant contribution to the Wilson coefficient at the scale m̃ reads:

C8(m̃) =

√
2

GF

αsπ

2mc

mg̃

m2
q̃

�
−1

3
M1(x)− 3M2(x)

�
(δu12)LR (4.8)

≈
√
2

GF

αsπ

m̃2

�
− 5

36

�
(cu12)LR

λA0

m̃

where the loop functions M1,2(x) are defined in [59]. In the above expression x = m2
g̃/m

2
q̃, whereas

in the approximate equality we took x = 1 and plugged (4.6) in. Including the QCD running we

finally obtain:

∆aCP ≈ −(0.13%)Im(∆RSM
)− 0.65%

�
1 TeV

m̃

�2 �A0

8m̃
Im(cu12)LR

�
Im(∆RNP

)

0.2
. (4.9)
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Following the same logic of Section 3 we assume that ∆aCP is saturated by physics beyond the
SM. From (4.9) we see that this requires:

Im(cu12)LR × A0

m̃
×

�
1 TeV

m̃

�2

∼ 8, (4.10)

modulo hadronic uncertainties involved in estimating ∆RSM,NP . A more favorable condition is
met if we consider a nondegenerate spectrum for the sfermions. However, the general trend is not
expected to change dramatically, so we stick to the minimal choice (4.3).

Taking m̃ ∼ m̃0 ∼ 1 TeV allows us to marginally evade the current direct bounds on the
sparticle spectrum. However, for Im(cu12)LR ∼ 1, this possibility requires A0/m̃ > 3 and generally
implies the existence of new vacua with color and electromagnetic quantum numbers [60]. This
pathology is avoided if the coefficient (cu12)LR turns out to be larger than its NDA estimate, such
that even for A0 ∼ m̃ the condition (4.10) can be satisfied3. Alternatively, keeping all coefficients
at their natural values we could impose A0/m̃ < 3 and find that m̃ � 600 GeV is now necessary.
This choice can be consistent with the LHC bounds only if the typical signature of our framework
departs significantly from the vanilla MSSM scenario with R-parity. Interestingly, the possibility
of having sizable R-parity violating couplings turns out to be viable, as shown in section 4.2 below.
As a side note m̃ ∼ 1 TeV and A0/m̃ ∼ 2 − 3 are in the right ballpark to obtain a Higgs boson
mass of 125 GeV without going beyond the MSSM at low energies, see e.g. [61].

Referring to Appendix C for details, we repeat the analysis of the flavor bounds of Section 2.
Our results are summarized in Table 2. For definiteness we give the various experimental bounds
for A0/m̃ = 2, and m̃ = m̃0 = 2µ = 1 TeV. Our results can be easily rescaled to other cases, by
simply noticing that the bounds in the Table scale roughly as the ratio m̃/(1 TeV) for ∆F = 2
observables and as (m̃/1 TeV)2 for ∆F = 1 ones. The scaling for different m̃0/m̃ and A0/m̃ can
be read immediatly from (4.6).

From Table 2 we see that flavor violation in the quark sector is again consistent with current
bounds. The largest effects are predicted in ∆F = 1 processes mediated by dipole operators, and
arise from observables such as ��/� and B → Xsγ. Analogously to the composite Higgs models of
section 2, a rather robust prediction of this framework is that new effects in the neutron EDM
should be around the corner.

In the lepton sector we observe a significant improvement compared to Table 1. This is because
the Feynman diagrams of the most constraining processes (µ → eγ and electron EDM) are now
suppressed by α�/αs and O(1) accidental numerical factors4 with respect to those that generate
the chromomagnetic operator used to fit ∆aCP . The model can be made fully consistent with
data if a moderate suppression of (ce11,12)LR is arranged and/or if the slepton sector is taken to be
slightly heavier than the squark sector. A typical expectation is however that µ → eγ and the
electron EDM are the most promising observables in which new physics should manifest itself in
the lepton sector.

3In our case the vacuum stability bound on the non-diagonal combination (cu12)LR × A0
m̃ is roughly 15, thanks

to the λ suppression of the A-term.
4Quantitatively αs/α� ∼ 10 and the loop function times the hypercharge couplings give another factor ∼ 3, thus

putting all together one finds an improvement by a factor ∼ 30. Since the bound in Table 1 is satisfied with a
suppression factor ∼ 200, we are left with (cu12)LR/(ce11,12)LR � 6, which is tolerable at the level of this analysis.
Notice that the tension disappears if the typical slepton mass is 2− 3 times larger than the typical squark mass.
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(δu12)LR

• Left-right up-type squark mixing contributions

• contributions to !F=2 helicity suppressed

• requires large trilinear (A) terms, non-trivial flavor in UV 

where (δu12)LR denotes the left-right mixing in the first two generations of up-squarks (in the

mass-eigenstate basis of up-type quarks) and xgq = m̃2
g/m̃

2
q . The Wilson coefficient C̃(g̃)

8 is

obtained from C(g̃)
8 via the replacement (δu12)LR → (δu12)RL, and

g8(x) =
11 + x

3(1− x)3
+

9 + 16x− x2

6(1− x)4
log x , g8(1) = − 5

36
. (32)

The enhancement factor m̃g/mc in eq. (31) is typically compensated by the chiral suppression

(proportional to mc) hidden inside the definition of (δu12)LR.

For later purposes, we report here also the results obtained in the case where the 1–2

transition arises from the mixing of the first two families with the third one. For near-degenerate

squarks, we find

C(g̃)
8 = −

√
2παsm̃g

GFmc

(δu13)LL (δu33)LR (δu32)RR

m̃2
q

F (xgq) , (33)

F (x) =
177 + 295x+ 7x2 + x3

36(1− x)5
+

9 + 50x+ 21x2

6(1− x)6
log x , F (1) = − 11

360
. (34)

In the case of split families, in which only the third-generation squarks are light (m̃2
q1,2 � m̃2

q3),

we find

C(g̃)
8 = −

√
2παsm̃g

GFmc

(δu13)LL (δu33)LR (δu32)RR

m̃2
q3

g8(xgq) , (35)

where the function g8(x) is given in eq. (32). In the latter case xgq3 = m̃2
g/m̃

2
q3 , and (δui3)LL,RR

are normalized to the heavy squarks masses (m̃q1,2), while (δu33)LR is normalized to m̃q3 .

The diagonal renormalization group evolution of the chromomagnetic operators down to

the low scales can be found, for instance, in ref. [24]. To a good approximation, the main effect

of the running is taken into account by evaluating the charm mass in eq. (31) at the low-energy

scale at which the hadronic matrix element is computed. Assuming, for illustrative purposes,

degenerate supersymmetric masses (m̃q = m̃g ≡ m̃) and |(δu12)LR| � |(δu12)RL|, we find

��∆aSUSY
CP

�� ≈ 0.6%

���Im (δu12)LR
��

10−3

��
TeV

m̃

�
, (36)

where we have used eq. (13) to estimate the matrix element of the chromomagnetic operator.

This gives an uncertainty of order one in the coefficient in eq. (36).

In a general supersymmetric framework, we expect the parametric relation

Im (δu12)LR ≈ Im(A) θ12 mc

m̃
≈

�
Im(A)

3

��
θ12
0.3

��
TeV

m̃

�
0.5× 10

−3 , (37)

where A is the trilinear coupling and θ12 is a mixing angle between the first two generations of

squarks. From eq. (36) we see that a large (and complex) trilinear coupling A, a Cabibbo-size

mixing angle, and squarks with TeV masses give a value of Im (δu12)LR in the correct ballpark

to reproduce the required effect. Taking into account the large uncertainties involved in the

evaluation of the matrix element, we conclude that a supersymmetric theory with left-right

up-squark mixing can potentially explain the LHCb result.
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mass-eigenstate basis of up-type quarks) and xgq = m̃2
g/m̃

2
q . The Wilson coefficient C̃(g̃)

8 is

obtained from C(g̃)
8 via the replacement (δu12)LR → (δu12)RL, and

g8(x) =
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+
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log x , g8(1) = − 5

36
. (32)

The enhancement factor m̃g/mc in eq. (31) is typically compensated by the chiral suppression

(proportional to mc) hidden inside the definition of (δu12)LR.

For later purposes, we report here also the results obtained in the case where the 1–2

transition arises from the mixing of the first two families with the third one. For near-degenerate

squarks, we find
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8 = −

√
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(δu13)LL (δu33)LR (δu32)RR

m̃2
q
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F (x) =
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log x , F (1) = − 11

360
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In the case of split families, in which only the third-generation squarks are light (m̃2
q1,2 � m̃2

q3),

we find
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8 = −
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(δu13)LL (δu33)LR (δu32)RR

m̃2
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where the function g8(x) is given in eq. (32). In the latter case xgq3 = m̃2
g/m̃

2
q3 , and (δui3)LL,RR

are normalized to the heavy squarks masses (m̃q1,2), while (δu33)LR is normalized to m̃q3 .

The diagonal renormalization group evolution of the chromomagnetic operators down to

the low scales can be found, for instance, in ref. [24]. To a good approximation, the main effect

of the running is taken into account by evaluating the charm mass in eq. (31) at the low-energy

scale at which the hadronic matrix element is computed. Assuming, for illustrative purposes,

degenerate supersymmetric masses (m̃q = m̃g ≡ m̃) and |(δu12)LR| � |(δu12)RL|, we find

��∆aSUSY
CP

�� ≈ 0.6%

���Im (δu12)LR
��
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��
TeV

m̃

�
, (36)

where we have used eq. (13) to estimate the matrix element of the chromomagnetic operator.

This gives an uncertainty of order one in the coefficient in eq. (36).

In a general supersymmetric framework, we expect the parametric relation

Im (δu12)LR ≈ Im(A) θ12 mc

m̃
≈

�
Im(A)

3

��
θ12
0.3

��
TeV

m̃

�
0.5× 10

−3 , (37)

where A is the trilinear coupling and θ12 is a mixing angle between the first two generations of

squarks. From eq. (36) we see that a large (and complex) trilinear coupling A, a Cabibbo-size

mixing angle, and squarks with TeV masses give a value of Im (δu12)LR in the correct ballpark

to reproduce the required effect. Taking into account the large uncertainties involved in the

evaluation of the matrix element, we conclude that a supersymmetric theory with left-right

up-squark mixing can potentially explain the LHCb result.
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SUSY
•  As usual in SUSY case, it is possible to define the mass insertions

from:

L∆F=1 ∼ �ai �
b
jgρv

1

Λ2
f
a
i σµνgSMF

µν
SMf

b
j (4.5)

+ �ai �
b
jg

2
ρ

g2SM
g2ρ

1

Λ2
f
a
i γ

µf b
j iH

†←→D µH

L∆F=2 ∼ �ai �
b
j�

c
k�

d
l g

2
ρ

g2SM
g2ρ

1

Λ2
f
a
i γ

µf b
j f

c
kγµf

d
l

For a fixed Λ, the above structure is formally identical to (3.3)–(3.5) provided one replaces 4π/gρ →
gSM/gρ. The two realizations will therefore lead to comparable predictions if we set gρ ∼ 4π in the
models of Section 2 and assume gρ ∼ gSM in the SUSY model. More generally, however, we expect
that when gρ � gSM in (4.5) the flavor violating processes mediated by ∆F = 2 and penguin
operators will be parametrically suppressed compared to the non-SUSY case.

To quantitatively assess flavor violation in the present model we find it convenient to employ
the mass insertion approximation in the notation of [59]. We thus rotate the superfields into the
basis where the Yukawas are diagonal via the unitary matrices (2.5). The structure one obtains
is still the same as in (4.1), and we define:

(δu,dij )LL = (cu,dij )LL × m̃2
0

m̃2
�qi �

q
j , (δu,dij )RR = (cu,dij )RR × m̃2

0

m̃2
�u,di �u,dj ,

(δu,dij )LR = (cu,dij )LR × gρ �
q
i �

u,d
j

vu,d A0

m̃2
, (δu,dij )RL = (cu,dij )RL × gρ �

u,d
i �qj

vu,d A0

m̃2
, (4.6)

where vu = v sin β and vd = v cos β with v ≈ 174 GeV, while (cfij)LR,RL are coefficients with NDA
value O(1). Analogous expressions hold for the lepton sector, and will not be reproduced here for
brevity.

In writing (4.6) we neglected the contribution of the µ term in the family-diagonal LR in-
sertions, which can be relevant when tanβ is large even for µ < A0. Although these terms can
be phenomenologically relevant, for example in setting bounds on the phase of the µ term times
gaugino masses, we do not consider them here since they do not provide direct constraints on the
coefficients (cfij)LR,RL defined in (4.6).

In the regime gρ � 1 the largest chirality-violating contributions always come from single
(δij)LR insertions, while the triple insertions of the type (δi3)LL(δ33)LR(δ3j)RR provide subleading
corrections. In the opposite limit, gρ ∼ yt, one requires �q,u3 ∼ 1 in order to reproduce the
correct top mass value, and finds that the diagonal top squark masses receive an unsuppressed
flavor-violating contribution, �

m2
q,u

�
33

∼ m̃2 + m̃2
0, (4.7)

which can either add up or cancel against the flavor universal one. This possibility can be used
to realize the so called split-families ansatz in a corner of the parameter space of flavorful SUSY.
In this limit (δu33)LL(RR) are O(1) while (δu33)LR is still smaller than 1 as long as (mq,u)33 > mt.
In order to make the mass insertion approximation well-defined it is thus sufficient to define the
stop propagators including the full m2

33 mass in eq.(4.7) and not just the flavor universal term.
In this way the former conclusions about the hierarchy between single and multiple insertions are
still valid, and we only expect O(1) modifications in our numerical results.
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Is this picture compatible with the other experimental data?

• Strategy: apply bounds con the coefficients c

• We choose m̃ = m̃0 = 1 TeV A0

m̃
= 2and

•  The asymmetry in the charm sector is given by 
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Figure 2: Central value and 1σ band for the size of m̃
�

m̃/A0Im(cu12)LR required in order to repro-

duce (1.1) as a function of the SM contribution and taking Im(∆RNP ) = 0.2, see Eq. (4.9).

As argued below Eq. (4.5), and recently emphasized in [18], left-right transitions will play an

important role in our analysis. Interestingly, Partial Compositeness implies that their off-diagonal
structure is automatically the same as that of the Yukawa’s, though not necessarily aligned, such

that we can write Au,d
ij ∝ mu,d

j �qi/�
q
j . In this sense, the present framework can be seen as a concrete

realization of the scenario dubbed ‘disoriented A-terms’ in [18], and explicitly designed to generate

the observad ∆aCP in the D meson decays.

4.1 The CP Asymmetry in D Meson Decays

We are now ready to see which region of the parameter space is favored by the LHCb result. The

dominant contribution to the direct CP asymmetry (1.1) is again induced by the chromomagnetic

operator of (3.8). Analogously to the non-SUSY scenario, the coefficient C �
8 is suppressed by

a factor (δu12)RL/(δu12)LR ∼ mu/mcλ2 ∼ 5% compared to C8 and can hence be neglected. The

relevant contribution to the Wilson coefficient at the scale m̃ reads:

C8(m̃) =

√
2

GF

αsπ

2mc

mg̃

m2
q̃

�
−1

3
M1(x)− 3M2(x)

�
(δu12)LR (4.8)

≈
√
2

GF

αsπ

m̃2

�
− 5

36

�
(cu12)LR

λA0

m̃

where the loop functions M1,2(x) are defined in [59]. In the above expression x = m2
g̃/m

2
q̃, whereas

in the approximate equality we took x = 1 and plugged (4.6) in. Including the QCD running we

finally obtain:

∆aCP ≈ −(0.13%)Im(∆RSM
)− 0.65%

�
1 TeV

m̃

�2 �A0

8m̃
Im(cu12)LR

�
Im(∆RNP

)

0.2
. (4.9)
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Following the same logic of Section 3 we assume that ∆aCP is saturated by physics beyond the
SM. From (4.9) we see that this requires:

Im(cu12)LR × A0

m̃
×

�
1 TeV

m̃

�2

∼ 8, (4.10)

modulo hadronic uncertainties involved in estimating ∆RSM,NP . A more favorable condition is
met if we consider a nondegenerate spectrum for the sfermions. However, the general trend is not
expected to change dramatically, so we stick to the minimal choice (4.3).

Taking m̃ ∼ m̃0 ∼ 1 TeV allows us to marginally evade the current direct bounds on the
sparticle spectrum. However, for Im(cu12)LR ∼ 1, this possibility requires A0/m̃ > 3 and generally
implies the existence of new vacua with color and electromagnetic quantum numbers [60]. This
pathology is avoided if the coefficient (cu12)LR turns out to be larger than its NDA estimate, such
that even for A0 ∼ m̃ the condition (4.10) can be satisfied3. Alternatively, keeping all coefficients
at their natural values we could impose A0/m̃ < 3 and find that m̃ � 600 GeV is now necessary.
This choice can be consistent with the LHC bounds only if the typical signature of our framework
departs significantly from the vanilla MSSM scenario with R-parity. Interestingly, the possibility
of having sizable R-parity violating couplings turns out to be viable, as shown in section 4.2 below.
As a side note m̃ ∼ 1 TeV and A0/m̃ ∼ 2 − 3 are in the right ballpark to obtain a Higgs boson
mass of 125 GeV without going beyond the MSSM at low energies, see e.g. [61].

Referring to Appendix C for details, we repeat the analysis of the flavor bounds of Section 2.
Our results are summarized in Table 2. For definiteness we give the various experimental bounds
for A0/m̃ = 2, and m̃ = m̃0 = 2µ = 1 TeV. Our results can be easily rescaled to other cases, by
simply noticing that the bounds in the Table scale roughly as the ratio m̃/(1 TeV) for ∆F = 2
observables and as (m̃/1 TeV)2 for ∆F = 1 ones. The scaling for different m̃0/m̃ and A0/m̃ can
be read immediatly from (4.6).

From Table 2 we see that flavor violation in the quark sector is again consistent with current
bounds. The largest effects are predicted in ∆F = 1 processes mediated by dipole operators, and
arise from observables such as ��/� and B → Xsγ. Analogously to the composite Higgs models of
section 2, a rather robust prediction of this framework is that new effects in the neutron EDM
should be around the corner.

In the lepton sector we observe a significant improvement compared to Table 1. This is because
the Feynman diagrams of the most constraining processes (µ → eγ and electron EDM) are now
suppressed by α�/αs and O(1) accidental numerical factors4 with respect to those that generate
the chromomagnetic operator used to fit ∆aCP . The model can be made fully consistent with
data if a moderate suppression of (ce11,12)LR is arranged and/or if the slepton sector is taken to be
slightly heavier than the squark sector. A typical expectation is however that µ → eγ and the
electron EDM are the most promising observables in which new physics should manifest itself in
the lepton sector.

3In our case the vacuum stability bound on the non-diagonal combination (cu12)LR × A0
m̃ is roughly 15, thanks

to the λ suppression of the A-term.
4Quantitatively αs/α� ∼ 10 and the loop function times the hypercharge couplings give another factor ∼ 3, thus

putting all together one finds an improvement by a factor ∼ 30. Since the bound in Table 1 is satisfied with a
suppression factor ∼ 200, we are left with (cu12)LR/(ce11,12)LR � 6, which is tolerable at the level of this analysis.
Notice that the tension disappears if the typical slepton mass is 2− 3 times larger than the typical squark mass.
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The enhancement factor m̃g/mc in eq. (31) is typically compensated by the chiral suppression

(proportional to mc) hidden inside the definition of (δu12)LR.

For later purposes, we report here also the results obtained in the case where the 1–2
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squarks, we find
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where the function g8(x) is given in eq. (32). In the latter case xgq3 = m̃2
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q3 , and (δui3)LL,RR

are normalized to the heavy squarks masses (m̃q1,2), while (δu33)LR is normalized to m̃q3 .

The diagonal renormalization group evolution of the chromomagnetic operators down to

the low scales can be found, for instance, in ref. [24]. To a good approximation, the main effect

of the running is taken into account by evaluating the charm mass in eq. (31) at the low-energy

scale at which the hadronic matrix element is computed. Assuming, for illustrative purposes,

degenerate supersymmetric masses (m̃q = m̃g ≡ m̃) and |(δu12)LR| � |(δu12)RL|, we find
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where we have used eq. (13) to estimate the matrix element of the chromomagnetic operator.

This gives an uncertainty of order one in the coefficient in eq. (36).

In a general supersymmetric framework, we expect the parametric relation
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≈
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where A is the trilinear coupling and θ12 is a mixing angle between the first two generations of

squarks. From eq. (36) we see that a large (and complex) trilinear coupling A, a Cabibbo-size

mixing angle, and squarks with TeV masses give a value of Im (δu12)LR in the correct ballpark

to reproduce the required effect. Taking into account the large uncertainties involved in the

evaluation of the matrix element, we conclude that a supersymmetric theory with left-right

up-squark mixing can potentially explain the LHCb result.
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of the running is taken into account by evaluating the charm mass in eq. (31) at the low-energy

scale at which the hadronic matrix element is computed. Assuming, for illustrative purposes,

degenerate supersymmetric masses (m̃q = m̃g ≡ m̃) and |(δu12)LR| � |(δu12)RL|, we find
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where we have used eq. (13) to estimate the matrix element of the chromomagnetic operator.

This gives an uncertainty of order one in the coefficient in eq. (36).

In a general supersymmetric framework, we expect the parametric relation
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3
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�
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−3 , (37)

where A is the trilinear coupling and θ12 is a mixing angle between the first two generations of

squarks. From eq. (36) we see that a large (and complex) trilinear coupling A, a Cabibbo-size

mixing angle, and squarks with TeV masses give a value of Im (δu12)LR in the correct ballpark

to reproduce the required effect. Taking into account the large uncertainties involved in the

evaluation of the matrix element, we conclude that a supersymmetric theory with left-right

up-squark mixing can potentially explain the LHCb result.
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Table 2: Upper bounds on the dimensionless coefficients of the mass insertions in the notation (4.6),
with m̃ = m̃0 = 2µ = 1 TeV and A0/m̃ = 2. See text for details on the parameter scaling of the
various bounds. We used the abbreviation tβ = tanβ. Note that c ∼ 4 for the chromomagnetic
∆C = 1 operator. The experimental constraints on the flavor-changing mass insertions in the quark
sector are taken from [45]. For the quark EDMs and the lepton sector see text. To minimize the
constraints in the lepton sector we assumed (2.12).
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CH: loop in the strong sector
SUSY: Bino vs Gluino loop
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Conclusions

• Flavor and CP violation in the charm sector could represent the first hint of non 
minimal flavor violating New Physics. Unfortunately SM is not under control.

• Partial compositeness, could explain the “observed” CP asymmetry in the charm sector

• Other effects near the corner, in particular NP effects in the neutron EDM

• Composite Higgs case: resonances at 10 TeV

• SUSY case: CP asymmetry is reproduced with sparticles at 1 TeV
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CP Asymmetry in D decays
• CPV in violation in the charm sector is very interesting:

1. Sensitive to NP in the up sector
2. In the SM, direct CPV violation enters (naively) at O

�
VcbVub

VcsVus

αs

π

�
∼ 10−4
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Recently the LHCb collaboration reported evidence for direct CP violation in charm decays.

The value is sufficiently large that either substantially enhanced Standard Model contributions or

non-Standard Model physics is required to explain it. In the latter case only a limited number

of possibilities would be consistent with other existing flavor-changing constraints. We show that

warped extra dimensional models that explain the quark spectrum through flavor anarchy can

naturally give rise to contributions of the size required to explain the the LHCb result. The D
meson asymmetry arises through a sizable CP-violating contribution to a chromomagnetic dipole

operator. This happens naturally without introducing inconsistencies with existing constraints in

the up quark sector. We discuss some subtleties in the loop calculation that are similar to those in

Higgs to γγ. Loop-induced dipole operators in warped scenarios and their composite analogs exhibit

non-trivial dependence on the Higgs profile, with the contributions monotonically decreasing when

the Higgs is pushed away from the IR brane. We show that the size of the dipole operator quickly

saturates as the Higgs profile approaches the IR brane, implying small dependence on the precise

details of the Higgs profile when it is quasi IR localized. We also explain why the calculation of

the coefficient of the lowest dimension 5D operator is guaranteed to be finite. This is true not

only in the charm sector but also with other radiative processes such as electric dipole moments,

b → sγ, ��/�K and µ → eγ. We furthermore discuss the interpretation of this contribution within

the framework of partial compositeness in four dimensions and highlight some qualitative differences
between the generic result of composite models and that obtained for dynamics that reproduces the

warped scenario.

I. INTRODUCTION

Recently the LHCb collaboration reported 3.5σ evidence for a non-zero value of the difference between the time-

integrated CP asymmetries in the decays D0 → K+K−
and D0 → π+π−

[1] ∆aCP ≡ aK+K− − aπ+π− , where

af ≡ Γ(D0 → f)− Γ(D̄0 → f)

Γ(D0 → f) + Γ(D̄0 → f)
. (1)

Combined with other measurements of these CP asymmetries [2–6], the present world average is

∆aCP = −(0.67± 0.16)% . (2)

The effective weak Hamiltonian relevant for hadronic singly-Cabibbo-suppressed D decays renormalized at a scale

mc < µ < mb is

H
SM
|∆c|=1 =

GF√
2

�

q=s,d

λq

�

i=1,2

Cq
i Q

q
i + h.c.+ . . . , (3)

where λq = V ∗
cqVuq, Q

q
1 = (ūq)V−A (q̄c)V−A , Qq

2 = (ūαqβ)V−A (q̄βcα)V−A , and α,β are color indices. Dots denote

neglected Standard Model (SM) penguin operators with tiny Wilson coefficients. In the SM, as well as within its

minimally flavor violating extensions [7], contributions of the Hamiltonian HSM
|∆c|=1 to ∆aCP are suppressed relative to

the leading CKM terms factored out in Eq. (3) by |VcbVub|/|VcsVus| ≈ 0.07% and are therefore expected to be small [8].

However, since the charm scale is not far from ΛQCD, non-perturbative enhancements leading to substantially larger

values cannot be excluded [9] (see also [10]).

Nonetheless, without a substantial enhancement, the SM contribution would be too small to explain current ob-

servations. Moreover extensions of the SM generally also have difficulty accommodating the measured value without

conflicting with existing stringent flavor-changing constraints [11], since loop effects can produce other flavor viola-

tions in excess of their experimental values. This however is not true for the chromomagnetic dipole operators [8, 12]
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Experimental results

• Time-integrated CPV decay asymmetry to CP eigenstates:
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between the generic result of composite models and that obtained for dynamics that reproduces the
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servations. Moreover extensions of the SM generally also have difficulty accommodating the measured value without

conflicting with existing stringent flavor-changing constraints [11], since loop effects can produce other flavor viola-
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non-Standard Model physics is required to explain it. In the latter case only a limited number

of possibilities would be consistent with other existing flavor-changing constraints. We show that

warped extra dimensional models that explain the quark spectrum through flavor anarchy can

naturally give rise to contributions of the size required to explain the the LHCb result. The D
meson asymmetry arises through a sizable CP-violating contribution to a chromomagnetic dipole

operator. This happens naturally without introducing inconsistencies with existing constraints in

the up quark sector. We discuss some subtleties in the loop calculation that are similar to those in

Higgs to γγ. Loop-induced dipole operators in warped scenarios and their composite analogs exhibit

non-trivial dependence on the Higgs profile, with the contributions monotonically decreasing when

the Higgs is pushed away from the IR brane. We show that the size of the dipole operator quickly
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the coefficient of the lowest dimension 5D operator is guaranteed to be finite. This is true not

only in the charm sector but also with other radiative processes such as electric dipole moments,
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the framework of partial compositeness in four dimensions and highlight some qualitative differences
between the generic result of composite models and that obtained for dynamics that reproduces the
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Experimental results

• Time-integrated CPV decay asymmetry to CP eigenstates:
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Recently the LHCb collaboration reported evidence for direct CP violation in charm decays.

The value is sufficiently large that either substantially enhanced Standard Model contributions or

non-Standard Model physics is required to explain it. In the latter case only a limited number

of possibilities would be consistent with other existing flavor-changing constraints. We show that

warped extra dimensional models that explain the quark spectrum through flavor anarchy can

naturally give rise to contributions of the size required to explain the the LHCb result. The D
meson asymmetry arises through a sizable CP-violating contribution to a chromomagnetic dipole

operator. This happens naturally without introducing inconsistencies with existing constraints in

the up quark sector. We discuss some subtleties in the loop calculation that are similar to those in

Higgs to γγ. Loop-induced dipole operators in warped scenarios and their composite analogs exhibit

non-trivial dependence on the Higgs profile, with the contributions monotonically decreasing when

the Higgs is pushed away from the IR brane. We show that the size of the dipole operator quickly

saturates as the Higgs profile approaches the IR brane, implying small dependence on the precise

details of the Higgs profile when it is quasi IR localized. We also explain why the calculation of

the coefficient of the lowest dimension 5D operator is guaranteed to be finite. This is true not

only in the charm sector but also with other radiative processes such as electric dipole moments,

b → sγ, ��/�K and µ → eγ. We furthermore discuss the interpretation of this contribution within

the framework of partial compositeness in four dimensions and highlight some qualitative differences
between the generic result of composite models and that obtained for dynamics that reproduces the

warped scenario.

I. INTRODUCTION

Recently the LHCb collaboration reported 3.5σ evidence for a non-zero value of the difference between the time-

integrated CP asymmetries in the decays D0 → K+K−
and D0 → π+π−

[1] ∆aCP ≡ aK+K− − aπ+π− , where
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. (1)

Combined with other measurements of these CP asymmetries [2–6], the present world average is

∆aCP = −(0.67± 0.16)% . (2)
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2 = (ūαqβ)V−A (q̄βcα)V−A , and α,β are color indices. Dots denote

neglected Standard Model (SM) penguin operators with tiny Wilson coefficients. In the SM, as well as within its

minimally flavor violating extensions [7], contributions of the Hamiltonian HSM
|∆c|=1 to ∆aCP are suppressed relative to

the leading CKM terms factored out in Eq. (3) by |VcbVub|/|VcsVus| ≈ 0.07% and are therefore expected to be small [8].

However, since the charm scale is not far from ΛQCD, non-perturbative enhancements leading to substantially larger

values cannot be excluded [9] (see also [10]).

Nonetheless, without a substantial enhancement, the SM contribution would be too small to explain current ob-

servations. Moreover extensions of the SM generally also have difficulty accommodating the measured value without

conflicting with existing stringent flavor-changing constraints [11], since loop effects can produce other flavor viola-

tions in excess of their experimental values. This however is not true for the chromomagnetic dipole operators [8, 12]
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Recently the LHCb collaboration reported evidence for direct CP violation in charm decays.

The value is sufficiently large that either substantially enhanced Standard Model contributions or

non-Standard Model physics is required to explain it. In the latter case only a limited number

of possibilities would be consistent with other existing flavor-changing constraints. We show that

warped extra dimensional models that explain the quark spectrum through flavor anarchy can

naturally give rise to contributions of the size required to explain the the LHCb result. The D
meson asymmetry arises through a sizable CP-violating contribution to a chromomagnetic dipole

operator. This happens naturally without introducing inconsistencies with existing constraints in

the up quark sector. We discuss some subtleties in the loop calculation that are similar to those in

Higgs to γγ. Loop-induced dipole operators in warped scenarios and their composite analogs exhibit

non-trivial dependence on the Higgs profile, with the contributions monotonically decreasing when

the Higgs is pushed away from the IR brane. We show that the size of the dipole operator quickly

saturates as the Higgs profile approaches the IR brane, implying small dependence on the precise

details of the Higgs profile when it is quasi IR localized. We also explain why the calculation of

the coefficient of the lowest dimension 5D operator is guaranteed to be finite. This is true not

only in the charm sector but also with other radiative processes such as electric dipole moments,

b → sγ, ��/�K and µ → eγ. We furthermore discuss the interpretation of this contribution within

the framework of partial compositeness in four dimensions and highlight some qualitative differences
between the generic result of composite models and that obtained for dynamics that reproduces the

warped scenario.
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minimally flavor violating extensions [7], contributions of the Hamiltonian HSM
|∆c|=1 to ∆aCP are suppressed relative to

the leading CKM terms factored out in Eq. (3) by |VcbVub|/|VcsVus| ≈ 0.07% and are therefore expected to be small [8].

However, since the charm scale is not far from ΛQCD, non-perturbative enhancements leading to substantially larger

values cannot be excluded [9] (see also [10]).

Nonetheless, without a substantial enhancement, the SM contribution would be too small to explain current ob-
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saturates as the Higgs profile approaches the IR brane, implying small dependence on the precise

details of the Higgs profile when it is quasi IR localized. We also explain why the calculation of

the coefficient of the lowest dimension 5D operator is guaranteed to be finite. This is true not

only in the charm sector but also with other radiative processes such as electric dipole moments,

b → sγ, ��/�K and µ → eγ. We furthermore discuss the interpretation of this contribution within

the framework of partial compositeness in four dimensions and highlight some qualitative differences
between the generic result of composite models and that obtained for dynamics that reproduces the

warped scenario.

I. INTRODUCTION

Recently the LHCb collaboration reported 3.5σ evidence for a non-zero value of the difference between the time-

integrated CP asymmetries in the decays D0 → K+K−
and D0 → π+π−

[1] ∆aCP ≡ aK+K− − aπ+π− , where

af ≡ Γ(D0 → f)− Γ(D̄0 → f)

Γ(D0 → f) + Γ(D̄0 → f)
. (1)

Combined with other measurements of these CP asymmetries [2–6], the present world average is

∆aCP = −(0.67± 0.16)% . (2)

The effective weak Hamiltonian relevant for hadronic singly-Cabibbo-suppressed D decays renormalized at a scale

mc < µ < mb is

H
SM
|∆c|=1 =

GF√
2

�

q=s,d

λq

�

i=1,2

Cq
i Q

q
i + h.c.+ . . . , (3)

where λq = V ∗
cqVuq, Q

q
1 = (ūq)V−A (q̄c)V−A , Qq

2 = (ūαqβ)V−A (q̄βcα)V−A , and α,β are color indices. Dots denote

neglected Standard Model (SM) penguin operators with tiny Wilson coefficients. In the SM, as well as within its

minimally flavor violating extensions [7], contributions of the Hamiltonian HSM
|∆c|=1 to ∆aCP are suppressed relative to

the leading CKM terms factored out in Eq. (3) by |VcbVub|/|VcsVus| ≈ 0.07% and are therefore expected to be small [8].

However, since the charm scale is not far from ΛQCD, non-perturbative enhancements leading to substantially larger

values cannot be excluded [9] (see also [10]).

Nonetheless, without a substantial enhancement, the SM contribution would be too small to explain current ob-

servations. Moreover extensions of the SM generally also have difficulty accommodating the measured value without

conflicting with existing stringent flavor-changing constraints [11], since loop effects can produce other flavor viola-

tions in excess of their experimental values. This however is not true for the chromomagnetic dipole operators [8, 12]
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Comparing with TC
• Pattern of symmetry breaking: 

SU(2)xU(1)

G
H G→ H

by strong interactions 
f > v

gρ, mρ

• Explicit breaking of G due to the Yukawa sector and an effective potential for H is generated:

1. EW symmetry is broken

2. Higgs mass is generated

potential, associated to other G breaking couplings, possibly involving only the heavy states.

Provided the extra contributions have different form than the one from the top quark, we

may tune a little bit the quadratic term with respect to the quartic, thus suppressing ξ.

The second possibility to generate Yukawa couplings is to have the SM fermions couple

linearly to fermionic operators of the strong sector:

yLf̄LOR + yRf̄ROL + h.c. , (26)

where yL,R are matrices in flavor space. In the simplest cases, OL,R have definite quantum

numbers under G, and therefore eq. (26) formally determines the spurionic quantum numbers

of yL,R. The possibility of generating Yukawas from the linear couplings of eq. (26) was first

suggested in ref. [19] for Technicolor models, and it is the one implemented in Holographic

Higgs models [6]. Writing eq. (26) as a function of the physical states of the strong sector

Ψ, one can see that in these models the Yukawa couplings are generated through a sort of

universal see-saw

mρ

[
yL

gρ
f̄LΨRPL(H/f) +

yR

gρ
f̄RΨLPR(H/f) + Ψ̄LΨR

]
. (27)

Notice that for yL ∼ gρ or yR ∼ gρ respectively fL or fR should be considered as part of the

strong sector 8. This remark explains the normalization of the mixing term in eq. (27). The

effective SM Yukawa couplings after integrating out the Ψ have the form

yf ∼
yLyR

gρ
. (28)

For yL ∼ yR one has yL,R ∼ √
yfgρ, which is a coupling of intermediate strength. If the

polynomials PL and PR are flavor universal so will be the cy coefficient at leading order

in the yL,R. Nevertheless, the exchange of Ψ will give rise to non-universal (H dependent)

corrections to the kinetic terms of fL,R that will scale like y2
L,R/g2

ρ. By going to canonically

normalized fermions one induces then O(y2
L,R/g2

ρ) non-universal corrections to cy. The top

contribution to the Higgs potential receives now, in addition to terms of the form (24),

corrections scaling like

V (H) ∼
m4

ρ

g2
ρ

×
y2

L,R

16π2
× V̂ (H/f) . (29)

For yL ∼ yR this leads to a Higgs quartic coupling λ ∼ (gρ/4π)34πyt, and therefore a

moderately heavy Higgs boson (∼ 300 GeV) can in principle be obtained 9. For the same

reason the suppression of the coefficients of Og would be yt/gρ instead of y2
t /g

2
ρ. Obviously,

8For instance, for yR ∼ gρ the linear combination of fR and ΨR which is left massless by the second and
third terms in eq. (27) has the natural interpretation of a massless composite.

9Whether this can be achieved in practice depends on the specific model at hand. Depending on the

14



Composite Higgs
• The Higgs is a pseudo Goldstone boson Georgi, Kaplan (1984)

Agashe, Contino, Pomarol hep-ph/0412089
Contino, 1005.4269

G

HU(1)Q

Comparing with TC
• Pattern of symmetry breaking: 

SU(2)xU(1)

G
H G→ H

by strong interactions 
f > v

gρ, mρ

• Explicit breaking of G due to the Yukawa sector and an effective potential for H is generated:

1. EW symmetry is broken

2. Higgs mass is generated

potential, associated to other G breaking couplings, possibly involving only the heavy states.

Provided the extra contributions have different form than the one from the top quark, we

may tune a little bit the quadratic term with respect to the quartic, thus suppressing ξ.

The second possibility to generate Yukawa couplings is to have the SM fermions couple

linearly to fermionic operators of the strong sector:

yLf̄LOR + yRf̄ROL + h.c. , (26)

where yL,R are matrices in flavor space. In the simplest cases, OL,R have definite quantum

numbers under G, and therefore eq. (26) formally determines the spurionic quantum numbers

of yL,R. The possibility of generating Yukawas from the linear couplings of eq. (26) was first

suggested in ref. [19] for Technicolor models, and it is the one implemented in Holographic

Higgs models [6]. Writing eq. (26) as a function of the physical states of the strong sector

Ψ, one can see that in these models the Yukawa couplings are generated through a sort of

universal see-saw

mρ

[
yL

gρ
f̄LΨRPL(H/f) +

yR

gρ
f̄RΨLPR(H/f) + Ψ̄LΨR

]
. (27)

Notice that for yL ∼ gρ or yR ∼ gρ respectively fL or fR should be considered as part of the

strong sector 8. This remark explains the normalization of the mixing term in eq. (27). The

effective SM Yukawa couplings after integrating out the Ψ have the form

yf ∼
yLyR

gρ
. (28)

For yL ∼ yR one has yL,R ∼ √
yfgρ, which is a coupling of intermediate strength. If the

polynomials PL and PR are flavor universal so will be the cy coefficient at leading order

in the yL,R. Nevertheless, the exchange of Ψ will give rise to non-universal (H dependent)

corrections to the kinetic terms of fL,R that will scale like y2
L,R/g2

ρ. By going to canonically

normalized fermions one induces then O(y2
L,R/g2

ρ) non-universal corrections to cy. The top

contribution to the Higgs potential receives now, in addition to terms of the form (24),

corrections scaling like

V (H) ∼
m4

ρ

g2
ρ

×
y2

L,R

16π2
× V̂ (H/f) . (29)

For yL ∼ yR this leads to a Higgs quartic coupling λ ∼ (gρ/4π)34πyt, and therefore a

moderately heavy Higgs boson (∼ 300 GeV) can in principle be obtained 9. For the same

reason the suppression of the coefficients of Og would be yt/gρ instead of y2
t /g

2
ρ. Obviously,

8For instance, for yR ∼ gρ the linear combination of fR and ΨR which is left massless by the second and
third terms in eq. (27) has the natural interpretation of a massless composite.

9Whether this can be achieved in practice depends on the specific model at hand. Depending on the
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• EW tuning is characterized by 

We will later discuss the Lagrangian terms that purely involve the vector bosons. The

coupling constants ci are pure numbers of order unity. For phenomenological applications,

we have switched to a notation in which gauge fields are canonically normalized, and gauge

couplings explicitly appear in covariant derivatives. Also, we recall the definition H†←→D µH ≡
H†DµH − (DµH†)H .

In what follows, we will comment on the operators in eq. (15). Let us start with the

operators involving more than two Higgs fields. As previously discussed, by using the Fierz

identities for the Pauli matrices, one can write three independent operators involving four

H fields and two covariant derivatives. Two are shown in our Lagrangian with coefficients

cH and cT . The third operator H†H|DµH|2, can be written in terms of a combination of

cH , cT , c6, cy by a Higgs field redefinition Hα → Hα + (H†H)Hα/f 2, or, which is equivalent,

by using the leading order equations of motion. The operator with coefficient cH , as we will

show in sect. 4, plays a crucial role in testing the SILH in Higgs and vector boson scattering

at high-energy colliders. The operator proportional to cT violates custodial symmetry and

gives a contribution T̂ to the ρ parameter

∆ρ ≡ T̂ = cT ξ, (16)

ξ ≡
v2

f 2
, v =

(√
2GF

)−1/2
= 246 GeV. (17)

From the SM fit of electroweak data [16], we find −1.1 × 10−3 < cT ξ < 1.3 × 10−3 at 95%

CL (letting also Ŝ to vary one finds instead −1.7 × 10−3 < cT ξ < 1.9 × 10−3 at 95% CL).

Because of this strong limit, we will neglect new effects from this operator and set cT to zero.

Indeed, the bound on cT suggests that new physics relevant for electroweak breaking must

be approximately custodial-invariant. In our Goldstone Higgs scenario this corresponds to

assuming the coset SO(5)/SO(4). When gSM is turned on, cT receives a model dependent

contribution, which should be small enough to make the model acceptable. In the next

section, we will briefly discuss the size of cT in various models.

The coefficient cy is universal at leading order in the Yukawa couplings, and non-universal

effects will appear at order y2
f/g

2
ρ. This is because this term purely originates from the

non linearity in H of the σ-model matrices. Indeed, the field redefinition mentioned above

precisely generates this universal cy.

The operators proportional to cW and cB are generated respectively by tree-level exchange

of a massive triplet and singlet vector field as explained in the previous section (see also

eq. (117) in appendix A). Their relative importance in 2-to-2 scattering amplitudes with

respect to the operator proportional to cH is (g2/g2
ρ)(cW,B/cH). Therefore, in weakly-coupled

10

• Higgs tuning is characterized by 
m2

h
αSM
4π m2

ρ
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Lepton sector
• Yukawas for charged leptons

�ai to reproduce the SM masses and would thus lead to larger effects in flavor-violating processes,

e.g. in meson-meson mixing. We will emphasize in section 3 that in order to avoid danger-

ous tree-level Higgs corrections to ∆F = 2 processes it helps to realize the Higgs as a pseudo

Nambu-Goldstone boson (NGB) of the strong sector.

The NDA Lagrangian (2.2) predicts the following structure for the SM Yukawa matrices of the

up and down quarks:

(Yu)ij ∼ gρ�
q
i �

u
j , (Yd)ij ∼ gρ�

q
i �

d
j . (2.4)

(We use ∼ throughout the text to indicate that the equalities hold up to unknown O(1) matrices

in flavor space.) Eq. (2.4) suggests that the non-trivial hierarchies of the SM fermion masses could

follow from hierarchical mixing parameters �ai , as anticipated above. Taking as a phenomenological

input �a1 < �a3 < �a3, and keeping only the leading terms in the expansion, the Yukawa matrices can

be straightforwardly diagonalized by unitary matrices:

(Lu)ij ∼ (Ld)ij ∼ min

�
�qi
�qj
,
�qj
�qi

�
, (Ru,d)ij ∼ min

�
�u,di

�u,dj

,
�u,dj

�u,di

�
. (2.5)

The resulting quark masses, renormalized at the scale mρ, read m
u,d
i = y

u,d
i v, with:

(L
†
uYuRu)ij = gρ�

u
i �

q
i δij ≡ y

u
i δij , (L

†
dYdRd)ij = gρ�

d
i �

q
i δij ≡ y

d
i δij , (2.6)

and v(mZ) � 174 GeV.

Furthermore, noticing that VCKM = L
†
dLu ∼ Lu,d we see that the present framework can

naturally explain the hierarchical structure of the mixing matrix provided that:

�q1
�q2

∼ λ
�q2
�q3

∼ λ2 �q1
�q3

∼ λ3
, (2.7)

where λ � 0.22 is the Cabibbo angle. In the following we assume that the approximate equalities

in (2.7) hold. With these identifications the mixing parameters of the left-handed quarks are

completely determined up to an overall normalization factor, whereas the �u,di ’s are constrained

by (2.6):

�u,di

�u,dj

=
y
u,d
i

y
u,d
j

�qj
�qi
. (2.8)

We are thus left with two free parameters that can be �q3 and �u3 or equivalently one of the two

and gρ.

The above discussion generalizes to the lepton sector, with the important difference that the

neutrinos are much lighter than the charged leptons. As a consequence, it is plausible that the

neutrino masses come from a different source, and there is more arbitrariness in the determination

of the �ai ’s.
In fact there is overwhelming experimental evidence indicating that the mixing matrix VPMNS =

L†
eLν is non-hierarchical. Because this latter feature generically occurs whenever Lν is anarchic,

and whatever the structure of the charged lepton matrix is, we argue that in order to accommo-

date current data in the lepton sector it suffices to generate hierarchical Yukawa couplings for the

charged leptons:

(Ye)ij ∼ gρ�
�
i�

e
j , (2.9)

3
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Lepton sector
• Yukawas for charged leptons
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ous tree-level Higgs corrections to ∆F = 2 processes it helps to realize the Higgs as a pseudo

Nambu-Goldstone boson (NGB) of the strong sector.

The NDA Lagrangian (2.2) predicts the following structure for the SM Yukawa matrices of the

up and down quarks:

(Yu)ij ∼ gρ�
q
i �

u
j , (Yd)ij ∼ gρ�

q
i �

d
j . (2.4)

(We use ∼ throughout the text to indicate that the equalities hold up to unknown O(1) matrices

in flavor space.) Eq. (2.4) suggests that the non-trivial hierarchies of the SM fermion masses could

follow from hierarchical mixing parameters �ai , as anticipated above. Taking as a phenomenological

input �a1 < �a3 < �a3, and keeping only the leading terms in the expansion, the Yukawa matrices can

be straightforwardly diagonalized by unitary matrices:

(Lu)ij ∼ (Ld)ij ∼ min

�
�qi
�qj
,
�qj
�qi

�
, (Ru,d)ij ∼ min

�
�u,di

�u,dj

,
�u,dj

�u,di

�
. (2.5)

The resulting quark masses, renormalized at the scale mρ, read m
u,d
i = y

u,d
i v, with:

(L
†
uYuRu)ij = gρ�

u
i �

q
i δij ≡ y

u
i δij , (L

†
dYdRd)ij = gρ�

d
i �

q
i δij ≡ y

d
i δij , (2.6)

and v(mZ) � 174 GeV.

Furthermore, noticing that VCKM = L
†
dLu ∼ Lu,d we see that the present framework can

naturally explain the hierarchical structure of the mixing matrix provided that:

�q1
�q2

∼ λ
�q2
�q3

∼ λ2 �q1
�q3

∼ λ3
, (2.7)

where λ � 0.22 is the Cabibbo angle. In the following we assume that the approximate equalities

in (2.7) hold. With these identifications the mixing parameters of the left-handed quarks are

completely determined up to an overall normalization factor, whereas the �u,di ’s are constrained

by (2.6):

�u,di

�u,dj

=
y
u,d
i

y
u,d
j

�qj
�qi
. (2.8)

We are thus left with two free parameters that can be �q3 and �u3 or equivalently one of the two

and gρ.

The above discussion generalizes to the lepton sector, with the important difference that the

neutrinos are much lighter than the charged leptons. As a consequence, it is plausible that the

neutrino masses come from a different source, and there is more arbitrariness in the determination

of the �ai ’s.
In fact there is overwhelming experimental evidence indicating that the mixing matrix VPMNS =

L†
eLν is non-hierarchical. Because this latter feature generically occurs whenever Lν is anarchic,

and whatever the structure of the charged lepton matrix is, we argue that in order to accommo-

date current data in the lepton sector it suffices to generate hierarchical Yukawa couplings for the

charged leptons:

(Ye)ij ∼ gρ�
�
i�

e
j , (2.9)

3

• Parameters cannot be univocally connected to physical inputs, due to our ignorance on 
neutrino masses

• If neutrinos are Dirac particles

VPMNS = L†
eLν

and a non-hierarchical neutrino mass matrix such that Lν = Oij(1).
In models where, in complete analogy with the quark sector, the strong dynamics is responsible

for the generation of a Dirac neutrino mass matrix one finds that Lν ∼ L� ∼ VPMNS is the natural
prediction. This scenario leads to a complete determination of ��i/�

�
j ∼ 1 and �ei/�

e
j ∼ me

i/m
e
j .

On the other hand, there is much more freedom in models where the neutrino mass matrix is
dominantly generated by couplings involving a SM bilinear, rather than the mixing operators
of (2.1). This program is realized as naturally as in the SM if the neutrinos are Majorana, in
which case the leading mass operator would be of the form:

YijLiLjO, (2.10)

with Yij anarchic, dimensionless couplings and O a composite SU(2)L triplet operator with scaling
dimension∆. At the scale∼ mρ, and assuming approximate conformal invariance below the cutoff,
Eq. (2.10) interpolates with:

∼ Yij

�
mρ

ΛUV

�∆−2 LiHLjH

ΛUV
(2.11)

thus realizing the standard see-saw mechanism when ∆ � 2. Similarly, if the neutrinos are Dirac,
by making the mixing parameters �νi for the right-handed neutrinos negligibly small, the dominant
contribution to the mass matrix would come from higher dimensional operators involving Liνj at
the UV scale [36]. In either case we see that the only constraints imposed on the parameters ��,ei
are given in (2.9).

Although ��i/�
�
j as well as �

e,�
3 are effectively free-parameters, we will see that the phenomenolog-

ically most favorable scenario is that where the left-right and right-left transitions are comparable
in magnitude. This is realized when:

��i
��j

∼ �ei
�ej

∼
�

me
i

me
j

. (2.12)

3 Flavor Violation in Composite Higgs Models

We now consider the case of Partial Compositeness in a generic Composite Higgs model.
An inspection of (2.2) reveals that the main short-distance sources of flavor-violation in these

models come from the following ∆F = 1 and ∆F = 2 operators:

L∆F=1 ∼ �ai �
b
jgρ

v

m2
ρ

g2ρ
(4π)2

f
a
i σµνgSMF

µν
SMf

b
j (3.1)

+ �ai �
b
j

g2ρ
m2

ρ

f
a
i γ

µf b
j iH

†←→D µH

L∆F=2 ∼ �ai �
b
j�

c
k�

d
l

g2ρ
m2

ρ

f
a
i γ

µf b
j f

c
kγµf

d
l

where gSMF
µν
SM is the coupling and field strength of any of the SM gauge groups. (Note that

insertions of gSMF
µν
SM = −i[Dµ, Dν ] are counted like two derivatives and that, as anticipated

4

• If neutrinos are Majorana particles, other parameters introduced

(Yν)ij ∼ gρ�
�
i�

ν
j
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In models where, in complete analogy with the quark sector, the strong dynamics is responsible

for the generation of a Dirac neutrino mass matrix one finds that Lν ∼ L� ∼ VPMNS is the natural
prediction. This scenario leads to a complete determination of ��i/�

�
j ∼ 1 and �ei/�

e
j ∼ me

i/m
e
j .
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dominantly generated by couplings involving a SM bilinear, rather than the mixing operators
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µν
SM is the coupling and field strength of any of the SM gauge groups. (Note that

insertions of gSMF
µν
SM = −i[Dµ, Dν ] are counted like two derivatives and that, as anticipated
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• If neutrinos are Majorana particles, other parameters introduced

(Yν)ij ∼ gρ�
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i�

ν
j

Operator ∆F = 2 Re(c)× (4π/gρ)2 Im(c)× (4π/gρ)2 Observables

(s̄Lγµ
dL)

2 6× 102
�

�u3
�q3

�2
2

�
�u3
�q3

�2
∆mK ; �K [44][45]

(s̄RdL)
2 500 2 ”

(s̄R dL)(s̄LdR) 2× 102 0.6 ”

(c̄Lγµ
uL)

2 4× 102
�

�u3
�q3

�2
70

�
�u3
�q3

�2
∆mD; |q/p|,φD [44][45]

(c̄L uR)
2 30 6 ”

(c̄R uL)(c̄LuR) 3× 102 50 ”

(b̄Lγµ
dL)

2 5

�
�u3
�q3

�2
2

�
�u3
�q3

�2
∆mBd

; SψKS [44][45]

(b̄R dL)
2 80 30 ”

(b̄R dL)(b̄LdR) 3× 102 80 ”

(b̄Lγµ
sL)

2 6

�
�u3
�q3

�2
∆mBs [44][45]

(b̄R sL)
2 1× 102 ”

(b̄R sL)(b̄LsR) 3× 102 ”

Operator ∆F = 1 Re(c) Im(c) Observables

sRσµν
eFµνbL 1 B → Xs [46]

sLσµν
eFµνbR 2 9 ”

sRσµν
gsGµνdL - 0.4 K → 2π; ��/� [47]

sLσµν
gsGµνdR - 0.4 ”

s̄Lγµ
bL H

†
i
←→
D µH 30

� gρ
4π

�2
(�u3)

2
Bs → µ

+
µ
− [48]

s̄Lγµ
bL H

†
i
←→
D µH 6

� gρ
4π

�2
(�u3)

2 10
� gρ
4π

�2
(�u3)

2
B → Xs �+�− [46]

Operator ∆F = 0 Re(c) Im(c) Observables

dσµν
eFµνdL,R - 3× 10−2 neutron EDM [49][50]

uσµν
eFµνuL,R - 0.3 ”

dσµν
gsGµνdL,R - 4× 10−2 ”

uσµν
gsGµνuL,R - 0.2 ”

b̄Lγµ
bL H

†
i
←→
D µH 5

� gρ
4π

�2
(�u3)

2
Z → bb̄ [51]

Leptonic Operator Re(c) Im(c) Observables

eσµν
eFµνeL,R - 5× 10−2 electron EDM [52]

µσµν
eFµνeL,R 4× 10−3

µ → eγ [53]

ēγµ
µL,R H

†
i
←→
D µH 1.5

� gρ
4π

� �e3
��3

µ(Au) → e(Au) [54]

Table 1: Upper bounds on the dimensionless coefficients of the operators in the notation (3.3)–(3.5),
with Λ = 4πmρ/gρ = 10 TeV. The bound is on the coefficients renormalized at 10 TeV, and we
report the strongest ones. To minimize the constraints in the lepton sector we assumed (2.12). The
experimental bounds are taken from the references in the third column. See Appendix B for details.
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On the other hand, there is much more freedom in models where the neutrino mass matrix is
dominantly generated by couplings involving a SM bilinear, rather than the mixing operators
of (2.1). This program is realized as naturally as in the SM if the neutrinos are Majorana, in
which case the leading mass operator would be of the form:

YijLiLjO, (2.10)

with Yij anarchic, dimensionless couplings and O a composite SU(2)L triplet operator with scaling
dimension∆. At the scale∼ mρ, and assuming approximate conformal invariance below the cutoff,
Eq. (2.10) interpolates with:
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thus realizing the standard see-saw mechanism when ∆ � 2. Similarly, if the neutrinos are Dirac,
by making the mixing parameters �νi for the right-handed neutrinos negligibly small, the dominant
contribution to the mass matrix would come from higher dimensional operators involving Liνj at
the UV scale [36]. In either case we see that the only constraints imposed on the parameters ��,ei
are given in (2.9).

Although ��i/�
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j as well as �
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3 are effectively free-parameters, we will see that the phenomenolog-

ically most favorable scenario is that where the left-right and right-left transitions are comparable
in magnitude. This is realized when:
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∼
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3 Flavor Violation in Composite Higgs Models

We now consider the case of Partial Compositeness in a generic Composite Higgs model.
An inspection of (2.2) reveals that the main short-distance sources of flavor-violation in these

models come from the following ∆F = 1 and ∆F = 2 operators:
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where gSMF
µν
SM is the coupling and field strength of any of the SM gauge groups. (Note that

insertions of gSMF
µν
SM = −i[Dµ, Dν ] are counted like two derivatives and that, as anticipated
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�ai to reproduce the SM masses and would thus lead to larger effects in flavor-violating processes,

e.g. in meson-meson mixing. We will emphasize in section 3 that in order to avoid danger-

ous tree-level Higgs corrections to ∆F = 2 processes it helps to realize the Higgs as a pseudo

Nambu-Goldstone boson (NGB) of the strong sector.

The NDA Lagrangian (2.2) predicts the following structure for the SM Yukawa matrices of the

up and down quarks:

(Yu)ij ∼ gρ�
q
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u
j , (Yd)ij ∼ gρ�

q
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d
j . (2.4)

(We use ∼ throughout the text to indicate that the equalities hold up to unknown O(1) matrices

in flavor space.) Eq. (2.4) suggests that the non-trivial hierarchies of the SM fermion masses could

follow from hierarchical mixing parameters �ai , as anticipated above. Taking as a phenomenological

input �a1 < �a3 < �a3, and keeping only the leading terms in the expansion, the Yukawa matrices can

be straightforwardly diagonalized by unitary matrices:
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and v(mZ) � 174 GeV.
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completely determined up to an overall normalization factor, whereas the �u,di ’s are constrained

by (2.6):
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We are thus left with two free parameters that can be �q3 and �u3 or equivalently one of the two
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The above discussion generalizes to the lepton sector, with the important difference that the

neutrinos are much lighter than the charged leptons. As a consequence, it is plausible that the

neutrino masses come from a different source, and there is more arbitrariness in the determination

of the �ai ’s.
In fact there is overwhelming experimental evidence indicating that the mixing matrix VPMNS =

L†
eLν is non-hierarchical. Because this latter feature generically occurs whenever Lν is anarchic,

and whatever the structure of the charged lepton matrix is, we argue that in order to accommo-

date current data in the lepton sector it suffices to generate hierarchical Yukawa couplings for the
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j , (2.9)

3

• Parameters cannot be univocally connected to physical inputs, due to our ignorance on 
neutrino masses

• If neutrinos are Dirac particles

VPMNS = L†
eLν

and a non-hierarchical neutrino mass matrix such that Lν = Oij(1).
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by making the mixing parameters �νi for the right-handed neutrinos negligibly small, the dominant
contribution to the mass matrix would come from higher dimensional operators involving Liνj at
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sRσµν
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sLσµν
gsGµνdR - 0.4 ”

s̄Lγµ
bL H

†
i
←→
D µH 30
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4π

�2
(�u3)

2
Bs → µ

+
µ
− [48]

s̄Lγµ
bL H

†
i
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�2
(�u3)
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�2
(�u3)

2
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†
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Leptonic Operator Re(c) Im(c) Observables

eσµν
eFµνeL,R - 5× 10−2 electron EDM [52]

µσµν
eFµνeL,R 4× 10−3

µ → eγ [53]
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†
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Table 1: Upper bounds on the dimensionless coefficients of the operators in the notation (3.3)–(3.5),
with Λ = 4πmρ/gρ = 10 TeV. The bound is on the coefficients renormalized at 10 TeV, and we
report the strongest ones. To minimize the constraints in the lepton sector we assumed (2.12). The
experimental bounds are taken from the references in the third column. See Appendix B for details.
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• In any case the phenomenologically most favorable scenario is the LR symmetric case

and a non-hierarchical neutrino mass matrix such that Lν = Oij(1).
In models where, in complete analogy with the quark sector, the strong dynamics is responsible

for the generation of a Dirac neutrino mass matrix one finds that Lν ∼ L� ∼ VPMNS is the natural
prediction. This scenario leads to a complete determination of ��i/�

�
j ∼ 1 and �ei/�

e
j ∼ me

i/m
e
j .

On the other hand, there is much more freedom in models where the neutrino mass matrix is
dominantly generated by couplings involving a SM bilinear, rather than the mixing operators
of (2.1). This program is realized as naturally as in the SM if the neutrinos are Majorana, in
which case the leading mass operator would be of the form:

YijLiLjO, (2.10)

with Yij anarchic, dimensionless couplings and O a composite SU(2)L triplet operator with scaling
dimension∆. At the scale∼ mρ, and assuming approximate conformal invariance below the cutoff,
Eq. (2.10) interpolates with:

∼ Yij

�
mρ

ΛUV

�∆−2 LiHLjH

ΛUV
(2.11)

thus realizing the standard see-saw mechanism when ∆ � 2. Similarly, if the neutrinos are Dirac,
by making the mixing parameters �νi for the right-handed neutrinos negligibly small, the dominant
contribution to the mass matrix would come from higher dimensional operators involving Liνj at
the UV scale [36]. In either case we see that the only constraints imposed on the parameters ��,ei
are given in (2.9).

Although ��i/�
�
j as well as �

e,�
3 are effectively free-parameters, we will see that the phenomenolog-

ically most favorable scenario is that where the left-right and right-left transitions are comparable
in magnitude. This is realized when:

��i
��j

∼ �ei
�ej

∼
�

me
i

me
j

. (2.12)

3 Flavor Violation in Composite Higgs Models

We now consider the case of Partial Compositeness in a generic Composite Higgs model.
An inspection of (2.2) reveals that the main short-distance sources of flavor-violation in these

models come from the following ∆F = 1 and ∆F = 2 operators:

L∆F=1 ∼ �ai �
b
jgρ

v

m2
ρ

g2ρ
(4π)2

f
a
i σµνgSMF

µν
SMf

b
j (3.1)

+ �ai �
b
j

g2ρ
m2

ρ

f
a
i γ

µf b
j iH

†←→D µH

L∆F=2 ∼ �ai �
b
j�

c
k�

d
l

g2ρ
m2

ρ

f
a
i γ

µf b
j f

c
kγµf

d
l

where gSMF
µν
SM is the coupling and field strength of any of the SM gauge groups. (Note that

insertions of gSMF
µν
SM = −i[Dµ, Dν ] are counted like two derivatives and that, as anticipated

4

PC is ruled out or extra flavor protection in the strong sector is needed
(no hadronic uncertainties to blame!)

Taglia (?)



Summary CH models

• The New Physics scale required to saturate the CPV in D decays is too large for direct 
production

• Tuning of O(0.1-1%) why not?!

• The model is marginally consistent with all the bounds in the quark sector. Neutron 
EDM provides the most robust constraint (signature?!)

• Possible effects in  

• Lepton sector problematic, needs ad hoc symmetries

�K , ��/�, B → Xsγ



SUSY

Ô

gρ, mρ

Ĥu, Ĥd

Φ̂

MSSM�iÔiΦ̂i

• Flavor is generated at a scale 
  
• Another scale associated to the mediation of SUSY breaking

ΛF = mρ

ΛS

(Nomura, Papucci, Stolarski 2008)



Low energy MSSM
NDA Lagrangian:

LSUSY
NDA =

�
d2θ

�
d2θ

m2
ρ

g2ρ
K
�
�ai gρΦ

a
i

mρ
, X,

gρHu,d

mρ

�
(4.2)

+

��
d2θ

m3
ρ

g2ρ
W

�
�ai gρΦ

a
i

mρ
, X,

gρHu,d

mρ

�
+ h.c.

�
.

Here K (W) is a generic O(1) real (holomorphic) function. Note that we assumed that the Higgses
Hu,d are fully composite2, in analogy with the generic models of section 2. From the above
Lagrangian we can easily derive the soft masses of the squarks and sleptons and the A-terms,
which are the main source of flavor violation within the MSSM. An inspection of (4.2) shows that
the former ∝ m̃2

0 arise entirely from the Kahler, whereas the latter ∝ A0 receive contributions also
from the superpotential. Because of this we will treat m̃2

0 and A0 ∝ m̃0 as distinct parameters.
Schematically, the flavorful SUSY breaking terms read m2

ij ∼ �i�j (1 + �k�k) m̃2
0 ∼ �i�jm̃2

0 and
Aij ∼ gρ�i�j (1 + �k�k)A0 ∼ gρ�i�jA0. Finally, including possible “direct” positive contributions,
we find that the relevant soft parameters have the form (4.1).

Our primary goal is to investigate the viability of the minimal scenarios in which the only source
of flavor violation is parametrized by the spurions �ai ’s. For this reason, as well as simplicity, we
will focus on models with non-hierarchical soft SUSY masses for squarks and sleptons:

m̃2
q,u,d ∼ m̃2

�,e ∼ m̃2 . (4.3)

More general cases can certainly be considered, but we believe that a qualitative understanding of
the actual viability of SUSY scenarios of Partial Compositeness can already be obtained assuming
an approximately degenerate spectrum. One could for example introduce hierarchies among the
squark and slepton masses, as it happens in minimal gauge mediation. The interested reader can
translate our results to these cases with minimal effort. One could also consider scenarios where
additional sources of flavor violation are introduced. An interesting case that attracted renewed
attention after the latest LHC direct limits on the superpartners is the one where the third quark
generation is lighter than the first two (see [58] for an effective description). In the latter case
flavor-violation will be mainly controlled by the alignment in the first two families rather than by
the �ai ’s.

Before analyzing in detail the bounds on the present model, it is instructive to compare the
flavor-violating structure following from (4.1) to that of the non-SUSY model (3.3)–(3.5) studied
in the previous section. An important difference between the two scenarios is that in the present
case we are free to decouple the strong flavor sector by taking:

mρ � 10 TeV (4.4)

without introducing additional naturalness issues. Under this working hypothesis, flavor-violating
contributions will mainly arise through loops of the SM superpartners, and will hence be controlled
by the SM couplings and the superpartner mass scale m̃. We thus define Λ = 4πm̃/gSM, where gSM
collectively denotes a SM coupling, and find that the dominant source of flavor-violation follows

2
It is straightforward to generalize our results to the case of partially composite Higgses.
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•  Low energy EFT can be derived from

•  Respect to the non susy case mρ � 10 TeV

•  As before but with               and X keep track of SUSY breakingf → Φ
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•  Low energy EFT can be derived from

•  Respect to the non susy case mρ � 10 TeV

•  As before but with               and X keep track of SUSY breakingf → Φ

•  Soft terms:
Expected form of soft terms

(m2
Q)ij = m̃2

Qδ
ij + m̃2

0c
ij
Q �iQ�

j
Q ∼ δij + �iQ × �jQ

(m2
U )ij = m̃2

Uδ
ij + m̃2

0c
ij
U �iU �

j
U ∼ δij + �iU × �jU

(m2
D)ij = m̃2

Dδij + m̃2
0c

ij
D �iD�jD ∼ δij + �iD × �jD

Aij
U = �iQ�

j
Ugρ a

ij
U m̃0 ∼ Y ij

U m̃0

Aij
D = �iQ�

j
Dgρ a

ij
Dm̃0 ∼ Y ij

D m̃0

•  LL and RR are approximately universal and aligned

•  LR are O(1) non-universal but aligned 

•  Structure of !F =1 and !F = 2 analogous to non-SUSY partial compositeness

• concretely realizes scenario invoked to explain aCP by Giudice, Isidori, Paradisi ’12

23

No exact proportionality.
This realize the “Disoriented A-terms” scenario

Giudice, Isidori, Paradisi (2012)



Flavorful Supersymmetry
•  Flavor and SUSY breaking

ΛF

msoft

• Generation of the flavor 

• Mediation of SUSY breaking 

• Low energy MFV MSSM

• RGE 

ΛS

Yu, Yd, Ye

m̃2
ij = m̃2

0 δij A = 0



Flavorful Supersymmetry
•  Flavor and SUSY breaking

ΛF

msoft

• Generation of the flavor 

• Mediation of SUSY breaking 

• Low energy MFV MSSM

• RGE 

ΛS

Yu, Yd, Ye

m̃2
ij = m̃2

0 δij A = 0

•  Flavorful SUSY

msoft • Low energy Flavorful MSSM

ΛF = mρ

Wmix = �Q
i Q̂iOQ̂i

+ . . .

m̃2
ij = m̃2

0 δij A = 0

m̃2
ij = m̃2

0 (δij + cij �i�j)
Y = gρ�L�R

A ∼ Y A0

(Nomura, Papucci, Stolarski 2008)

ΛS



R Parity Violation and PC

λ��
ijk ∼ �iD�jD�kU gρ

•  Assume Lepton number conserved by Flavor sector

•  Allow maximal B violation 

Viable scenario with characteristic pattern of B/Flavor violation

26

•  Without extra symmetries in the flavor sector we expect R parity violating couplings:

4.2 R-Parity Violation

In the absence of additional symmetries, the Lagrangian of the MSSM contains lepton- and baryon-
number violating interactions already at the renormalizable level. From an effective field theory
perspective it is important to ask whether these interactions are sufficiently suppressed in models
of Partial Compositeness, or if some new dynamical assumption must be imposed to render these
models phenomenologically viable. This is the purpose of the present section.

Following standard conventions, we write the (renormalizable) superpotential terms as:

W �B =
1

2
λ��
ijk
uidjdk, (4.11)

W �L =
1

2
λijkLiLjek + λ�

ijk
LiQjdk + µiLiHu.

There are also analogous soft terms, and of course higher dimensional operators, but their phe-
nomenological impact turns out to be subleading with respect to those in (4.11), and will hence
be neglected. Partial Compositeness predicts the following structure for the couplings of these
operators: 5

λ��
ijk

∼ 2g �B�
u

i
�d
j
�d
k

λijk ∼ 2g �L�
�
i
��
j
�e
k

λ�
ijk

∼ g �L�
�
i
�q
j
�d
k

µi ∼
g �L

gρ
��
i
µ, (4.12)

where g �B and g �L are couplings controlling the strength of baryon and lepton number violation. In
the absence of any symmetry we expect g �L ∼ g �B ∼ gρ.

The structure (4.12) has been obtained applying the general principles discussed above, and in
particular interpreting Li’s as elementary fields, as opposed to Hd which is composite. However,
from a more effective perspective, this distinction is not necessarily justified. Specifically, if the
lepton number is violated, then there is a priori no distinction between Hd and Li, as both fields
are charged under the same representation of the SM group. Let us elaborate on this issue a bit
further.

A collection of the bounds on the couplings (4.12) is reported in [62]. These are generally
estimated in a (super-) field basis L�

α ≡ (H �
d
, L

�
i
) where the Yukawa couplings of the charged leptons

as well as those of the quarks are diagonal, and where the “physical” Higgs H �
d
is identified with

the component of the four-vector L�
α that acquires a vacuum expectation value (or, equivalently,

such that the primed sneutrinos have vanishing vacuum expectation value). Our aim is to show
that in this perhaps more phenomenological field basis the couplings λijk, λ�

ijk
, λ��

ijk
, and µi have

the very same structure as shown in (4.12), so that the constraints of [62] straightforwardly apply
to our framework as well.

The crucial observation is that in the field basis adopted in (4.11) the scalar, neutral compo-
nents of Lα ≡ (Hd, Li) will generally acquire vacuum expectation values that, in the absence of
hierarchies among the soft SUSY masses, parametrically scale as:

�Lα� ∼ �αvd, (4.13)

with ��α ≡ (�Hd
= 1, ��

i
). This is so because all the tadpole couplings involving Li (and arising after

electro-weak symmetry breaking) are proportional to ��
i
. 6 It then follows that the field basis L�

α

5It is conceivable that the same physics responsible for solving the µ-problem also implies that µi ∝ µ.
6This conclusion is invalidated if additional sources of flavor violation are introduced.
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•  Without extra symmetries in the flavor sector we expect R parity violating couplings:
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• Simultaneous baryon and lepton number violation generate a too fast proton decay

• Lepton number violation is severely constraints by neutrino masses
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• Simultaneous baryon and lepton number violation generate a too fast proton decay

• Lepton number violation is severely constraints by neutrino masses

• Baryon number violation is very welcome to hide SUSY at colliders 
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Figure 3: A prototypical spectrum with R-handed up squark LSP avoiding missing energy signals
and isolated lepton events. See text for details.

The typical event is thus an experimentally challenging 6 jet final state, with no missing energy
nor displaced vertices. It is worth noticing that a spectrum of the kind shown in Figure 3 follows
from Partial Compositeness if the flavor-diagonal masses of m̃q,d,�,e are somewhat larger than or
of the order of the gluino mass, while the up-squark families are split such that

mũR,c̃R < mg̃ � mt̃R . (4.33)

This typically requires a mild suppression of m̃u compared to m̃ ∼ m̃q,d,�,e and gρ ∼ 1.
Quantitatively, the suppression in the number of top events can be roughly estimated to be

the ratio between a 2-body and a 3-body decay, i.e. a factor of order 102. Notice also that the
flavor-violating decay of the gluino into a top and an up-type squark of the second generation,
which is kinematically allowed, is suppressed by about the same amount. In particular, since the
production cross section scales approximately as the sixth power of the inverse mass of quarks and
gluinos, we expect that in such configurations the bound on mg̃, as estimated in [66], is reduced
by about a factor 2.

It is clear that, even assuming the picture of Figure 3, the squarks and the gluino cannot be
arbitrarily light. A simple and robust lower bound is obtained considering the LSP pair production
and its decay into 2 jets

pp → ũiũ
∗
i , ũiũi, ũ

∗
i ũ

∗
i → 4j, (4.34)

which is constrained by a recent CMS analysis [68] looking for pair produced dijet resonances.
We can do a ‘back of the envelope’ estimate using their limits. We assume a 2% acceptance, we
calculate the cross sections using MadGraph5 [69], and we include a K-factor of 1.5. Putting
for simplicity mũ = mg̃ we find a lower bound of 400GeV for a right-handed up squark LSP and
350GeV for a right-handed charm squark LSP. The difference between these numbers is due to
the pdf enhancement of the process pp → ũRũR due to t-channel gluino exchange in the case of
the up squark.

5 Conclusions

Partial Compositeness offers an elegant solution to the SM flavor puzzle, and serves as a powerful
organizing principle for flavor-violation in theories beyond the SM. In this paper we discussed its
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Depending on the spectra, bounds on 
squark and gluino down to 400 GeV
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2 Partial Compositeness

Let us start by briefly reviewing the paradigm of Partial Compositeness, and how this idea can
be used to explain the SM flavor hierarchy. The basic assumption is that at the UV cutoff ΛUV

the SM fermions fa

i
couple linearly to operators Oa

i
of a confining, flavorful sector:

λa

i
fa

i
O

a

i
, (2.1)

where hereafter a, b, · · · = q, u, d, �, e and i, j, · · · = 1, 2, 3 denote flavor and family indices, respec-
tively. In addition to (2.1) the two sectors communicate via the weak gauging of the SM group,
taken to be a subgroup of the chiral symmetry of the new dynamics.

Using naive dimensional analysis (NDA), and adopting the notation of [35], one finds that
the low energy effective Lagrangian renormalized at the confinement scale mρ of the flavor sector
schematically reads:

LNDA =
m4

ρ

g2ρ

�
L

(0)

�
gρ�ai f

a

i

m3/2
ρ

,
Dµ

mρ
,
gρH

mρ

�
+

g2ρ
16π2

L
(1)

�
gρ�ai f

a

i

m3/2
ρ

,
Dµ

mρ
,
gρH

mρ

�
+ . . .

�
(2.2)

where λa

i
(mρ) = gρ�ai , and the L(n)’s are O(1) functions.

The form (2.2) follows from the assumption that the only mass scale of the problem is mρ

and that all the couplings among the resonances of the flavor sector can be parametrized by a
single parameter gρ. One can equivalently derive (2.2) by first matching the UV theory with a low
energy Lagrangian for the composites of masses ∼ mρ. In this case the leading term L(0) would
arise from the tree-level exchange of the resonances, whereas the remainder from loop processes.

While in generic theories L(0) already contains all possible operators compatible with the
symmetries, it turns out that in all known tractable realizations the resonance spectrum is such
that the dipole operators first arise at 1-loop from L(1). In the following we will assume this is the
case.

The spurions �a
i
� 1 measure the amount of compositeness of the field fa

i
, and are such that

for �a
i
∼ 1 the corresponding SM fermion can be interpreted as a fully composite, massless state.

We will see shortly that the SM mass hierarchy can elegantly arise in theories where the �a
i
’s are

hierarchical. One can justify the existence of a hierarchy among the flavor-violating parameters
�a
i
if one postulates that the operators Oa

i
have large, flavor-dependent scaling dimensions ∆a

i
=

5/2 + δa
i
∼ 5/2 at the UV cutoff. In this case we expect:

gρ�
a

i
= λa

i
(mρ) ∼ λa

i
(ΛUV)

�
mρ

ΛUV

�δai

, (2.3)

and hence for δa
i
= O(1) hierarchical relations can arise in the deep IR even when the λa

i
’s

are generic, anarchic matrices in the UV. More generally, a controllable explanation of the SM
fermion hierarchy can only be given when ΛUV � mρ, since when ΛUV ∼ mρ the hierarchy merely
represents an assumption on the unknown cutoff theory rather than a prediction of the framework.

In general, also the Higgs doublet should be accompanied by the corresponding “composite-
ness” parameter �H . This quantity does not appear in LNDA since we have taken H to be fully
composite, and accordingly set �H = 1 in (2.2). From a genuinely phenomenological perspective,
the assumption of a weakly coupled Higgs at the scale mρ would require larger mixing parameters
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Figure 3: Estimates of the accuracy that can be achieved in Higgs coupling measurements

using a model-independent fit to LHC measurements with a 300 fb
−1

data set, from [43].

The estimates are given as a fraction of the predicted Standard Model value for the Higgs

coupling constants. The indicated horizontal lines represent 5% deviations. For the invisible

Higgs decay, the quantity plotted is the square root of the branching fraction.
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decay constant f , which typically is a factor of 4π smaller than the scale of the new

strong interactions. An estimate for the corrections to the hff couplings is [56]

g(f)/SM = 1 + (3− 9)% ·
�
1 TeV

f

�2

. (12)

In Little Higgs models, the Higgs boson couplings to γγ and gg are modified by

new contributions to the loop diagrams from the partners of the top quark and the

W and Z bosons. These particles have masses in the few-TeV range. An estimate of

the corrections is [57]

g(g)/SM = 1 + (5− 9)%

g(γ)/SM = 1 + (5− 6)% (13)

These results also illustrate the point made already in the previous section that

new physics corrections to the Higgs couplings can tweak any individual coupling

independently of the others, so that a general, model-independent analysis of the

couplings is needed.

After July 4, the issue of the precise values of the Higgs couplings has vaulted to

the top of the list of the most important problems in high energy physics. I have just

argued that the level of precision needed to address this problem is very high. Can

we get there?

4 Poised

During all of those years of waiting and hoping for the discovery of the Higgs

boson, many theorists and experimenters studied the prospects for new facilities that

would dramatically improve our understanding of this particle. We are poised to

build them now.

4.1 For the High Luminosity LHC

Beyond the LHC at 14 TeV and 10
34

luminosity, there is the High Luminosity

LHC. This planned upgrade of the LHC would begin its experimental data-taking

in 2022. The design gives a luminosity greater than 10
35
/cm

2
/sec, but also very

challenging experimental conditions with 200 pileup events per bunch crossing. This

upgrade will enable additional new particle searches, pushing the reach of the LHC

for gluinos and other strongly coupled new particles above 4 TeV [58].
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light Higgs that is the major source of electroweak symmetry breaking is at a severe

disadvantage. At the moment, is it still true that certain models without a light

Higgs are not excluded [50,51], but they will be in deep trouble if the measurements

described in Section 3.2, and available this year, meet the Standard Model expecta-

tions.

In Section 3.3, I made reference to many models that predicted order 1 deviations

of the Higgs boson couplings from the Standard Model predictions. Most of these

models have a common feature of requiring new particles with masses of the order

of 200 GeV or below. Those models that modify the Higgs boson couplings through

strong interaction effects in the electroweak sector require large perturbations not

only in the Higgs couplings but also in the top quark and W boson couplings. If

these particles or effects are not found, what then?

The more typical prediction of new physics models is that the new physics effects
on Higgs boson couplings are quite small. In the 1990’s, Howard Haber discussed this

conclusion in very general terms in [52]. Haber defined the “Decoupling Limit” of a

new physics model in which the Higgs boson is light but other new particles are heavy,

at masses of 1 TeV or above. In this situation, the fields associated with the new

particles can be integrated out of the effective Hamiltonian describing Higgs physics.

The effects of these particles is then present only in higher-dimension operators whose

coefficients are of the order of

m2
h/M

2
or m2

t/M
2 , (9)

where M is the mass of the new particles.

Here are some examples of corrections to the Higgs couplings in specific models

of new physics. More examples, and further discussion of the Decoupling Limit, can

be found in the recent paper of Gupta, Rzehak, and Wells [53].

In supersymmetric models, it is necessary that there are at least two Higgs doublet

fields. This gives rise to corrections to the Higgs couplings at tree level. The typical

size of the corrections to the hττ coupling is [54]

g(τ)/SM = 1 + 10%

�
400 GeV

mA

�2

, (10)

where mA is the mass of the heavy A0
Higgs boson. In models with large tan β, the

hbb coupling receives additional corrections from loop diagrams, estimated as [55]

g(b)/SM = g(τ)/SM + (1− 3)% . (11)

In Composite Higgs models, the Higgs bosons are effective Goldstone boson fields.

The Higgs couplings receive corrections sized by the scale of the Goldstone boson
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