The round table

Original questions and new questions

- Is a symmetric machine a strong limitation?
 - For charm CPV use Dalitz plot correlations (Bondar)
 - To be checked with appropriate MC
 - A taken decision
 - A possible asset by inverting beam charge?

competition

Parameter	$\Psi(3770)$	$\Psi(4040)$	LHCb	Belle-II
	0.02 - 0.05	0.03	0.015	80.0
y(%)	0.02-0.03	0.03	0.010	0.04
q/p (%)	2-5	0.9	1	5
$arg(q/p)(^{\circ})$	2-3	0.8	3	2.6

Uniform efficiency over the dalitz plot...(?)

- Is the polarization still an asset?
 - Polarized beams allow to be sensitive to tau polarization
 - Triple product for tau production involve tau's low momentum...
 - Tau spin may be used for correlations with decay products
 - Polarization as an asset to decrease background and enhance the signal yield. MC needed
 - Relevant for "difficult" tau decays
 - single energy

- Is the quoted luminosity value confortable?
 - Two independent lattice design with similar ring's length came to the same conclusion

Luminosity tune scan

CW advantage:

- BB coupling resonances are suppressed
- •Wide red area corresponds to 10^{35} cm⁻²s⁻¹

- Are there critical issues that require some further studies?
 - Final focus design and background
 - Polarization implementation
- Is the coexistence with an X-FEL operation mode pacific?
 - NOT discussed
- Is the luminosity at low energy competitive?
 - To be explored

Accelerator additional question

- Is the cost "projection" realistic?
 - IT tau charm points to a bare cost below 190
 - BINP layout is valued similarly
- Enough to proceed to engineered components evaluation

Very preliminary cost

Item	800 m 2.5 GeV		400 m 2.1 GeV	
		M€	M€	
Detector		100	100	
Collider		250	100 (1/2, less spin rot. and damping wig.)	
•Linac		40	30	
•Pol.e sour	ce	1	1	
•Building, t	unnels,	50	10 (renovation of equipment)	
engineering, etc.				
Civil engineering (IT)		T)	35	
•TOTAL		441	241 (141 + 35)	

Physics original questions

- Are there unique discovery physics cases?
 - Mainly on CPV and Flavor violation
 - Lepton universality to be better explored
 - Accessible NP scales to be investigated systematically
- Is there an ideal window of opportunity?
- What is the progress achievable on "standard measurements" for example in charm decays and charmonium states?

Late evening estimates of NP scale reach

- Ingredients
 - Dimension six operators with a scale LAMBDA
 - Heff= $\sum i(1/\Lambda^2)$ O_6
 - Dimensional analysis for Sigma and assuming 100 "rare" events (before cuts...) or BR of the order of 10^-9
 - Production, four fermions: 4-6 TeV
 - Production, two fermions: 25 TeV
 - Branching ratios 10^-9 in decays, four fermions: 30 TeV
 - Branching ratios 10^-9 in decays, two fermions: 300 TeV
 (units h=c=1=...2pi..)
- Interference effects gives much higher limits but need more data

Luminosity and threshold production

- Luminosity wins for the number of events
- Threshold conditions may strongly reduce background (phase space and PID of neutrals)
 - MC needed
 - -.... Detector needed...

Physics original questions

- Is there an ideal window of opportunity?
 - Probably before possible SuperkekB upgrade (25 ??)
 - ... but also tau charm may get an upgrade...
- What is the progress achievable on "standard measurements" for example in charm decays and charmonium states?
 - PANDA energy resolution on charmonium in p-pbar mode cannot be challenged.
 - Gamma gamma may provide non 1- states
 - Definite QCD progress (alfa, fragmentation functions, Passemar's talk)

τCΗΕΑΡ

(/ttʃiːp/) or (tch ēp)

Tau CHarm European Accelerator Project

τCΗΕΑΤ

(/ttsiːt/) or (tch ēt)

Tau CHarm European Accelerator Trap