Strangeness in Neutron Stars

Jürgen Schaffner-Bielich

Institut für Theoretische Physik

Laboratori Nazionali di Frascati, Italy, March 28, 2013

GEFÖRDERT VOM

Bundesministerium für Bildung und Forschung

Outline

- Introduction: measuring neutron star masses
- Hyperons in Neutron Stars: incompatible with massive pulsars?
 - Rescue the hyperons I: change hyperon potentials
 - Rescue the hyperons II: going from SU(6) to SU(3) symmetry
 - Rescue the hyperons III: add quark matter
- What is the maximum possible neutron star mass?
 - Constraints from causality
 - Constraints from subthreshold production of kaons in heavy-ion collisions
- Summary

Neutron Stars

NASA, ESA, and J. Hester (Arizona State University)

- produced in core collapse supernova explosions
- compact, massive objects: radius \approx 10 km, mass $1 - 2M_{\odot}$
- extreme densities, several times nuclear density: $n \gg n_0 = 3 \cdot 10^{14} \text{ g/cm}^3$
- in the middle of the crab nebula: a pulsar, a rotating neutron star!

The Pulsar Diagram

(ATNF pulsar catalog)

- the diagram for pulsars: period versus period change (P-P)
- dipole model for pulsars: characteristic age: $\tau = P/(2\dot{P})$ and magnetic field $B = 2 \cdot 10^{19} (P \cdot \dot{P})^{1/2}$ Gauss
- anomalous x-ray pulsars: AXP, soft-gamma ray repeaters: SGR, young pulsars in supernova remnants: SNR
- rapidly rotating pulsars (millisecond pulsars): mostly in binary systems (old recycled pulsars!)

Masses of Pulsars (Stairs 2006)

- nearly 2000 pulsars known with 140 binary pulsars
- best determined mass: $M = (1.4414 \pm 0.0002) M_{\odot}$ Hulse-Taylor pulsar (Weisberg and Taylor, 2004)
- mass of PSR J0751+1807 corr.
 from $M = (2.1 \pm 0.2) M_{\odot}$ to $M = (1.14 1.40) M_{\odot}$ (Nice et al. 2008)
- extremely rapid rotations: up to 716 Hz (1.397 ms) (PSR J1748-2446ad)

Mass measurement of pulsar PSR J1903+0327 (Freire 2009)

- measure post-Keplerian parameters from pulsar timing
- Shapiro delay parameters r and s alone constrain $M = (1.67 \pm 0.11) M_{\odot}$
- combined with periastron advance $\dot{\omega}$: $M = (1.67 \pm 0.01) M_{\odot}$
- rotation of the companion star could influence $\dot{\omega}$ (follow-up observation with Hubble planned)

Mass measurement of pulsar PSR J1614-2230 (Demorest et al. 2010)

1.8 1.85

1.9 1.95

2.05 2.1

1.95 2 Pulsar Mass (solar

- extremely strong signal for Shapiro delay
- Shapiro delay parameters rand s alone give $M = (1.97 \pm 0.04) M_{\odot}$ - new record!
- by far the highest precisely measured pulsar mass!
- considerable constraints on neutron star matter properties!

Constraints on the Mass-Radius Relation (Lattimer and Prakash 2004)

spin rate from PSR B1937+21 of 641 Hz: R < 15.5 km for $M = 1.4 M_{\odot}$

- Schwarzschild limit (GR): $R > 2GM = R_s$
- \blacksquare causality limit for EoS: R > 3GM
- \blacksquare mass limit from PSR J1614-2230 (red band): $M=(1.97\pm0.04)M_{\odot}$

Hyperons in Neutron Stars

Neutron Star Matter for a Free Gas

(Ambartsumyan and Saakyan, 1960)

Hadron	p,n	Σ^{-}	Λ	others
appears at:	$\ll n_0$	$4n_0$	$8n_0$	$> 20n_0$

but the corresponding equation of state results in a maximum mass of only

$$M_{\rm max} \approx 0.7 M_{\odot} < 1.44 M_{\odot}$$

(Oppenheimer and Volkoff, 1939)

effects from strong interactions are essential to describe neutron stars!

Experimental Status of Hypernuclear Systems

NA: attractive $\rightarrow \Lambda$ -hypernuclei for A = 3 - 209 $U_{\Lambda} = -30$ MeV at $n = n_0$

N Σ : ⁴_{Σ}He hypernucleus bound by isospin forces Σ^- atoms: potential is repulsive

NE: attractive \rightarrow 7 Ξ hypernuclear events $U_{\Xi} = -28$ MeV at $n = n_0$ quasi-free production of Ξ : $U_{\Xi} = -18$ MeV

 $\Lambda\Lambda$: attractive \rightarrow 3 $\Lambda\Lambda$ hypernuclei measured

YY: $Y = \Lambda, \Sigma, \Xi$, unknown!

hypernuclear programs: JLab, J-PARC, and PANDA, HYPHI @FAIR! CBM@FAIR: access to strange dibaryons, multi-hypernuclei! - P.11

Onset of Hyperons in Neutron Star Matter

Hyperons appear at $n \approx 2n_0!$ (based on hypernuclear data!)

relativistic mean—field (RMF) models
 (Glendenning 1985; Knorren, Prakash, Ellis 1996; JS and Mishustin 1996)

- nonrelativistic potential model (Balberg and Gal 1997)
- quark-meson coupling model (Pal et al. 1999)
- relativistic Hartree–Fock (Huber, Weber, Weigel, Schaab 1998)
- Brueckner–Hartree–Fock

(Baldo, Burgio, Schulze 1998, 2000; Vidana et al. 2000; Schulze, Polls, Ramos, Vidana 2006)

- chiral effective Lagrangian using SU(3) symmetry
 (Hanauske et al. 2000; Schramm and Zschiesche 2003; Dexheimer and Schramm 2008)
- density-dependent hadron field theory (Hofmann, Keil, Lenske 2001)
- G-matrix calculation (Nishizaki, Takatsuka, Yamamoto 2002)
- \blacksquare RG approach with $V_{\rm low~k}$ (Djapo, Schäfer, Wambach 2008)

\Rightarrow neutron stars are giant hypernuclei !!!

Maximum mass and modern many-body approaches

modern many-body calculations (using Nijmegen soft-core YN potential)

- Vidana et al. (2000): $M_{\rm max} = 1.47 M_{\odot}$ (NN and YN interactions), $M_{\rm max} = 1.34 M_{\odot}$ (NN, NY, YY interactions)
- Baldo et al. (2000): $M_{\rm max} = 1.26 M_{\odot}$ (including three-body nucleon interaction)
- **Schulze et al. (2006):** $M_{\rm max} < 1.4 M_{\odot}$
- **D** Japo et al. (2008): $M_{\rm max} < 1.4 M_{\odot}$ ($V_{\rm low-k}$)
- Schulze and Rijken (2011): $M_{\rm max} < 1.4 M_{\odot}$ (ESC08)
- EoS too soft, too low masses!

Maximum masses of neutron stars with hyperons

(Schulze and Rijken 2011)

- Brueckner-Hartree-Fock
 calculation with most recent soft
 core Nijmegen potential ESC08
- includes repulsive three-body forces (TBF, UIX')
- overall findings: $M < 1.4 M_{\odot}$ when hyperons are included
- their conclusion: need a stiff quark matter core!
- is it really necessary? And does it really work?

Rescue the hyperons I: change hyperon potentials

Varying the Σ potential for neutron stars: EoS

- use RMF model with set GM1
- EoS for different $U_{\Sigma} = -40, \dots 40 \text{ MeV}$
- lower curves: model 1
 (without φ meson)
- upper curves: model 1 + ϕ meson
- set $U_{\Xi} = -28 \text{ MeV}$
- Σ baryons do not soften the EoS for repulsive potentials

Varying the Σ potential for neutron stars: masses

- mass-radius relation for different $U_{\Sigma} = -40, \dots 40 \text{ MeV}$
- lower curves: model 1
 (without φ meson)
- upper curves: model 1 + ϕ meson
- Description Structure S
- moderate increase in maximum mass for repulsive Σ potential

Varying the Ξ potential for neutron stars: EoS

- use RMF model with set GM1
- mass-radius relation for different $U_{\Xi} = -40, \dots 40 \text{ MeV}$
- lower curves: model 1
 (without φ meson)
- upper curves: model 1 + ϕ meson
- repulsive Ξ potential stiffens
 the EoS at high densities
- set $U_{\Sigma} = +30 \text{ MeV}$

Varying the Ξ potential for neutron stars: masses

(Weissenborn, Chatterjee, JSB 2011)

- use RMF model with set GM1
- mass-radius relation for different

 $U_{\Xi} = -40, \dots 40 \text{ MeV}$

- lower curves: model 1
 (without φ meson)
- upper curves: model 1 + ϕ meson
- repulsive Ξ potential helps to increase maximum mass

Varying hyperon potentials for neutron stars

- contour plots for different Σ and Ξ potentials
- upper plot: model 1 (without ϕ meson)
- Iower plot: model 1 + ϕ meson
- new mass limit only compatible with (repulsive) ϕ meson

Rescue the hyperons II: going from SU(6) to SU(3) symmetry

SU(3) symmetry

- consider Yukawa coupling of baryons with mesons in SU(3): coupling of two octets: $8 \otimes 8 = 1 \oplus 8_S \oplus 8_A \oplus 10 \oplus 10^* \oplus 27$
- general coupling scheme for baryon octet with mesons:

 $\mathcal{L}_{\mathrm{SU}(3)} = -g_8 \alpha \operatorname{Tr}([\bar{B}, B]M) + g_8(1 - \alpha) \operatorname{Tr}(\{\bar{B}, B\}M) - g_1 \operatorname{Tr}(\bar{B}, B) \operatorname{Tr}(M)$

- parameters: octet coupling constant g_8 , $\alpha = F/(F+D) \text{ ratio (F: antisymmetric, D: symmetric coupling),}$ singlet coupling constant g_1 , meson nonet mixing angle θ
- SU(6) model: SU(3) flavour plus SU(2) spin symmetry
- spin independence of Λ and Σ vector coupling: $\alpha_V = 1$
- for vector nonet: ideal mixing $\tan \theta_V = 1/\sqrt{2}$ (ϕ meson: pure $s\bar{s}$ state)
- Independent of the second second
- everything fixed in terms of one (nucleon) coupling constant in SU(6)

Varying hyperon coupling *z*: coupling constants

(Weissenborn, Chatterjee, JSB 2011)

- baryon coupling constants for different $z = g_8/g_1 = 0, \ldots 2/\sqrt{6}$
- SU(6) value: $z = 1/\sqrt{6} \approx 0.408$, equal coupling for z = 0

always repulsive vector interactions except for $g_{N\phi}$

• Λ and Σ coupling constants are always equal

Varying hyperon coupling *z*: EoS

- varying $z = 0, \dots 2/\sqrt{6}$
- use set GM1 with model 1 + ϕ
- adjust scalar couplings to $U_{\Sigma} = +30$ MeV, $U_{\Xi} = -28$ MeV
- **SU(6)** value: $z = 1/\sqrt{6} \approx 0.408$
- always repulsive vector interactions except for $g_{N\phi}$

Varying hyperon coupling z for neutron stars

- allow $z = g_8/g_1$ to vary
- use set GM1 with model 1 + ϕ
- mass-radius relation for different $z = 0, \ldots 2/\sqrt{6}$ (repulsive vector interactions except for $g_{N\phi}$)
- **SU(6)** value: $z = 1/\sqrt{6} \approx 0.408$
- drastic difference in maximum mass

Maximum mass with hyperons for different z

(Weissenborn, Chatterjee, JSB 2011)

- maximum mass with varying hyperon couplings $z = g_8/g_1$
- different RMF parameter sets
- \checkmark continous drop in maximum mass with increasing z
- \checkmark values of $M > 2M_{\odot}$ possible

Maximum mass with hyperons

(Weissenborn, Chatterjee, JSB 2011)

- maximum mass for different effective masses of RMF parameter sets
- crosses: parameter sets with standard SU(6) baryon couplings
- \checkmark values of $M > 2M_{\odot}$ possible with hyperons for stiff nuclear EoS

Neutron Stars with Hyperons: Composition

 hyperons within RMF model: couples to scalar and vector fields

 scalar coupling: fixed by hyperon potential depths (hypernuclei)

 vector coupling: controlled by SU(3) symmetry, vary singlet to octet strength:

 $z = g_8/g_1$

Neutron Star Masses and Strangeness Fraction

(Weissenborn, Chatterjee, JSB 2012)

RMF model for different nuclear parameter sets and hyperon coupling

 ${}_{igsir}$ neutron star maximum mass versus the strangeness fraction f_s

• unique relation: $M_{\max}(f_s) = M_{\max}(0) - 0.6M_{\odot}(f_s/0.1)$

Rescue the hyperons III: add quark matter?

Hybrid Stars with a stiff nuclear EoS

(Weissenborn, Sagert, Pagliara, Hempel, JSB 2011)

- nuclear phase: relativistic mean field model with parameter set NL3 (fitted to properties of nuclei)
- match with Gibbs (lines) or Maxwell construction (shaded area)
- solid lines: pure quark matter cores, dashed lines: mixed phase cores

Hybrid Stars with a soft nuclear EoS

(Weissenborn, Sagert, Pagliara, Hempel, JSB 2011)

- nuclear phase: relativistic mean field model with parameter set TM1 (fitted to properties of nuclei)
- match with Gibbs (lines) or Maxwell construction (shaded area)
- solid lines: pure quark matter cores, dashed lines: mixed phase cores
- no pure quark cores compatible with data for a soft nuclear EoS

Hybrid Stars with a NJL model

(Bonanno and Sedrakian 2011)

- uses Nambu-Jona-Lasinio model for quark matter
- matches to nuclear EoS with hyperons (RMF with set NL3)
- SC quark matter below green line
- $\delta = R_{\rm CFL}/R$: amount of CFL quark matter

What is the maximum possible neutron star mass?

Maximum central density of a compact stars

(Lattimer and Prakash 2011)

- maximally compact EoS: $p = s(\epsilon \epsilon_c)$ with s = 1
- stiffest possible EoS (Zeldovich 1961)
- gives upper limit on compact star mass: $M_{\rm max} = 4.2 M_{\odot} (\epsilon_{\rm sat.}/\epsilon_f)^{1/2}$ (Rhoades and Ruffini 1974, Hartle 1978, Kalogera and Baym 1996, Akmal, Pandharipande, Ravenhall 1998)

Input to transport models: the nucleon potential

- crucial input to control the amount of compression: the nucleon potential
- study two extreme cases using the Skyrme model
- \checkmark hard EoS: stiffness parameter K = 380 MeV, soft EoS: K = 200 MeV

Heavy-ion collisions: density range probed with kaons

(Hartnack, Oeschler, Leifels, Bratkovskaya, Aichelin 2012)

- kaon production by associated production: NN \rightarrow NAK, NN \rightarrow NNKK
- \blacksquare produced in a baryon-rich medium at densities of $2n_0$ up to $3n_0$
- Iong mean-free path of kaons: escape from the high-density region

Kaon production in heavy-ion collisions

Sturm et al. (KaoS collaboration), PRL 2001

Fuchs, Faessler, Zabrodin, Zheng, PRL 2001

Confirmed KaoS data analysis: the nuclear EoS is soft!

Forster et al. (KaoS collaboration) 2007

Hartnack, Oeschler, Aichelin, 2006

kaon production (K⁺) far below threshold

 double ratio: multiplicity per mass number for C+C collisions and Au+Au collisions at 0.8 AGeV and 1.0 AGeV

• only calculations with a compression modulus of $K_N \approx 200$ MeV and smaller can describe the data

 \implies the nuclear equation of state is **SOFT**!

Constraint from heavy-ion data: nucleon potential at $2 - 3n_0$

(Sagert, Tolos, Chatterjee, JSB, Sturm 2012)

- input to transport simulations: nucleon potential
- \checkmark kaon production is sensitive to densities of $n=2-3n_0$ ($n_0=0.17$ fm⁻³)
- Constraint: nucleon potential must be below the curve for the Skyrme model with K = 200 MeV at a fiducial density of $n_f = 2 \dots 3n_0$

Constraint for neutron stars: causality plus heavy-ion

(Sagert, Sturm, Chatterjee, Tolos, JSB 2011)

- maximum mass for neutron stars versus the fiducial density
- same trend for the various nuclear models
- main difference: the density dependence of the asymmetry energy
- upper limit of a maximum mass of $M_{max} = 3M_{\odot}$ for $n_f = 2n_0$

Summary:

- hyperons can substantially soften the EoS
- hyperons can substantially reduce the maximum mass of neutron stars
- too low masses in modern many-body models
- rescue the hyperons in neutron stars:
 - make hyperon potentials repulsive: does not really work
 - add ϕ mesons and break SU(6) symmetry: works \implies limits on the amount of hyperons in neutron stars
 - add quark matter in the core: works
 - \implies both nuclear and quark matter must be stiff
- constraints from causality and heavy-ion data: new firm upper mass limit for neutron stars of $3M_{\odot}$!

Thanks to:

- Simon Weissenborn (Heidelberg)
- Debarati Chatterjee (Heidelberg)
- Giuseppe Pagliara (Ferrara)
- Matthias Hempel (Basel)
- Irina Sagert (Michigan State)
- Christian Sturm (GSI Darmstadt)
- Laura Tolos (Barcelona)

Composition of Neutron Star Matter

• attractive potential for Σ s and Ξ s

 Σ^- appear shortly before Λs around $n = 2n_0$

▶ As present in matter at $n = 2.5n_0$, Ξ^- before $n = 3n_0$

Composition of Neutron Star Matter

• As are present close to $n = 2n_0$

 \checkmark repulsive potential for Σ s: Σ hyperons do not appear at all!

population is highly sensitive to the in-medium potential!

Spin-orbit splitting of hypernuclei: theory

Simple Quark Model (SU(6) symmetry):

- in quark picture: $\Lambda = (uds)$, where the u- and d-quark couple to spin zero
- nucleon couples only to u- and d-quarks: no spin-orbit term!
- for $\Sigma^0 = (uds)$ u- and d-quarks couple to spin one \rightarrow big spin-orbit splitting!
- for $\Xi^- = (dss)$ or $\Xi^0 = (uss)$ nucleon couples to one light quark only \rightarrow same spin-orbit strength as for nucleons
- summary: spin-orbit strength goes as $N : \Lambda : \Sigma : \Xi = 1 : 0 : 2 : 1$

Relativistic potentials and SU(6) symmetry: cancellation effect due to large tensor term for Λ s (Jennings 1990)

Maximum mass without hyperons (nucleons only)

- \bullet maximum mass for different effective masses m^*/m and compressibility K
- \blacksquare change in maximum mass for different compressibilities: at most $0.1 M_{\odot}$
- \blacksquare change in maximum mass for different m^*/m : up to $1M_{\odot}!$
- \blacksquare values of $M>2M_{\odot}$ possible for reasonable values of m^*/m

At which density do new particles appear? (Page and Reddy (2006))

hyperons appear, when its in-medium energy equals its chemical potential: $\mu(Y) = \omega(Y) = m_Y + U_Y(n) \text{ with } \mu(Y) = B(Y) \cdot \mu_n - Q(Y) \cdot \mu_e$

thin lines: free gas, thick lines: with mean-field NN potential

note: horizontal lines are hyperon vacuum masses, onset of hyperons will change due to YN potentials

Varying hyperon coupling α_v : coupling constants

(Weissenborn, Chatterjee, JSB 2011)

- baryon coupling constants for different $\alpha_v = 0, \ldots 1$
- SU(6) value: $\alpha_v = 1$
- always repulsive vector interactions
- $\Lambda\omega$ coupling constant does not change

Varying hyperon coupling α_v : EoS

- **P** RMF set GM1, model 1 + ϕ
- adjust scalar couplings to $U_{\Sigma} = +30$ MeV, $U_{\Xi} = -28$ MeV
- varying $\alpha_v = 0, \dots 1$
- use set GM1 with model 1 + ϕ
- SU(6) value: $\alpha_v = 1$
- softest EoS for SU(6) case

(Weissenborn, Chatterjee, JSB 2011)

Varying hyperon coupling α_v for neutron stars

- varying $\alpha_v = 0, \dots 1$
- use set GM1 with model 1 + ϕ
- adjust scalar couplings to $U_{\Sigma} = +30$ MeV, $U_{\Xi} = -28$ MeV
- mass-radius relation for different α_v , SU(6) value: $\alpha_v = 1$
- substantially increasing mass with decreasing α_v

Maximum Masses of Neutron Stars – Causality

(Sagert, Sturm, Chatterjee, Tolos, JSB 2011)

Skyrme parameter set BSK8: fitted to masses of all known nuclei

above a fiducial density (determined from the analysis of the KaoS heavy-ion data) transition to stiffest possible EoS

Causality argument: $p = \epsilon - \epsilon_c$ above the fiducial density ϵ_f Rhoades, Ruffini (1974), Kalogera, Baym (1996): $M_{\text{max}} = 4.2M_{\odot}(\epsilon_0/\epsilon_f)^{1/2}$

 \blacksquare \Longrightarrow new upper mass limit of about $2.8M_{\odot}$ from heavy-ion data!

Maximum Masses of Neutron Stars – Causality

(Sagert, Sturm, Chatterjee, Tolos, JSB 2011)

Skyrme parameter set Sly4: fitted to properties of spherical nuclei

above a fiducial density (determined from the analysis of the KaoS heavy-ion data) transition to stiffest possible EoS

Causality argument: $p = \epsilon - \epsilon_c$ above the fiducial density ϵ_f Rhoades, Ruffini (1974), Kalogera, Baym (1996): $M_{\text{max}} = 4.2 M_{\odot} (\epsilon_0/\epsilon_f)^{1/2}$

 \blacksquare \Longrightarrow new upper mass limit of about $2.8M_{\odot}$ from heavy-ion data!

Maximum Masses of Neutron Stars – Causality

(Sagert, Sturm, Chatterjee, Tolos, JSB 2011)

RMF parameter set TM1: fitted to properties of spherical nuclei

above a fiducial density (determined from the analysis of the KaoS heavy-ion data) transition to stiffest possible EoS

Causality argument: $p = \epsilon - \epsilon_c$ above the fiducial density ϵ_f Rhoades, Ruffini (1974), Kalogera, Baym (1996): $M_{\text{max}} = 4.2M_{\odot}(\epsilon_0/\epsilon_f)^{1/2}$

 \blacksquare \Longrightarrow new upper mass limit of about $2.8M_{\odot}$ from heavy-ion data!