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How to achieve the excellent hadronic energy resolution
needed for experiments at the ILC?

Distinguish between hadronically decaying W,Z bosons
—> requires jet energy resolution < 4%

e Energy resolution is determined by FLUCTUATIONS

- The fact that 65% of jet energy is carried by charged particles (PFA)
is IRRELEVANT.



On the importance of the calorimeter for PFA

Table 1
The total energy carried by the charged fragments of jets and the fluctuations in this energy (oyms/Echarged) are listed for jet energies
ranging from 10-1000 GeV. Results are given for two different values of the fragmentation function parameter o

Jet energy (GeV) @=3 & =0
Charged fragments Fluctuations (%) Charged fragments Fluctuations (%)

10 6.83+2.06 30.1 6.88 +1.68 24.3
20 13.2+4.13 33.6 13.6+3.27 24.2
30 19.8+6.13 32.6 20.2+4.89 24.2
40 26.5+8.10 30.6 26.9+6.46 24.0
50 33.4+10.0 30.0 33.54+8.10 24.2
100 66.6 +19.9 30.4 66.6+16.3 24.4
200 1334+40.1 30.2 1334-32.0 24.1
300 200+ 59.8 29.9 200+48.4 24.2
400 266+80.4 30.3 266+ 64.2 24.2
500 3324+99.9 30.1 332+80.5 24.2
1000 663+201 30.3 665+ 160 24.1

In the absence of a calorimeter, one should
therefore not expect to be able to measure jet
energy resolutions better than 25-30% on the basis
of tracker information alone, at any energy. And

From: NIM A495 (2002) 107



How to achieve excellent hadronic energy resolution?

e In most hadron calorimeters, fluctuations in  f,,, dominate

- Eliminate by: Compensation (e¢/h = 1)
Measuring f,,, event by event (DREAM)

® Fluctuations in VISIBLE ENERGY (nuclear binding energy loss, AB)

- Non-em signal 1s dominated by “nuclear” component: p,n

- Correlation between “nuclear signal” and AB determines
ultimate limit on hadronic energy resolution (ZEUS vs DO)

- Crystals disfavored in this respect

o STOCHASTIC fluctuations (sampling, light yield ...)

- Limiting factor for electromagnetic energy resolution



ILC requirements were already met 20 years ago
by compensating calorimeters (SPACAL, ZEUS)

Hadronic signal distributions in a compensating calorimeter
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SPACAL 1989




Hadron calorimetry in practice
Energy resolution in a compensating calorimeter
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Pros & Cons of Compensating Calorimeters

Pros
® Same energy scale for electrons, hadrons and jets. No ifs, ands or buts.

® Calibrate with electrons and you are done.
® Excellent hadronic energy resolution (SPACAL: 30%/\VE).

® Linearity, Gaussian response function and all that good stuff.

® Compensation fully understood.
We know how to build these things, even though GEANT doesn t

Cons

® Small sampling fraction (2.4% in Pb/plastic)
— > em energy resolution limited (SPACAL: 13%/\E, ZEUS: 18%/VE)

® Compensation relies on detecting neutrons
— Large integration volume
—> Long integration time (~50 ns)

e Jet resolution not as good as for single hadrons in Pb,U calorimeters



What is the problem with the jet energy resolution?
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A copper or iron based calorimeter would be much better in that respect



An attractive option for improving the quality of hadron calorimetry:

Use Cerenkov light!! Why?

Cerenkov light almost exclusively produced by em shower component
(~80% of non-em energy deposited by non-relativistic particles)

= DREAM (Dual REAdout Method) principle:
Measure f,,, event by event by comparing C and dE/dx signals



DREAM: Structure
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e Some characteristics of the DREAM detector

- Depth 200 cm (10.0 Ajyt)

Effective radius 16.2 cm (0.81 Aint, 8.0 pyr)

Mass instrumented volume 1030 kg

Number of fibers 35910, diameter 0.8 mm, total length &~ 90 km

Hexagonal towers (19), each read out by 2 PMTs



DREAM: How to determine f,, and E?
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DREAM: Effect of event selection based on f,,,
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The new dual-readout fiber calorimeter
built by the RD52 Collaboration

e Fluctuations in erm eliminated

Fluctuations in effects of AB minimized (estimate 15%/\/E)

e [mprove on stochastic fluctuations
- Sampling fluctuations
- Cerenkov light yield

Both contributed ~35%/\/E to DREAM results

* Test effect of improvements with electron showers,
since the em resolution is limited by stochastic fluctuations



The first SuperDREAM module tested at CERN

Pb absorber
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Production of Pb based Super DREAM modules




The first copper module




The new SuperDREAM fiber module tested at CERN
(December 2012)
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Rear side of the new Super DREAM module
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The RDS5?2 fiber calorimeter tested in November 2012




S and C signals sample the showers independently
Resolution improves by combining
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Combining signals from two fiber types improves resolution

—> Stochastic term dominates
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Em resolution RD52 compared to other fiber calorimeters
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Hadron detection with a dual-readout calorimeter
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The calorimeter response and energy resolution for single pions

Electron energy scale well reproduced by DR!!
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Radial profile and hadronic shower containment
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Average signal / GeV (a.u.)

Linearity measurements for em showers
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(Semi) - Digital HCALs
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Calorimeter calibration 1ssues
Hadronic response and signal linearity (CMS)

CMS pays a price for its focus on em energy resolution
ECAL has e¢/h =2.4, while HCAL has e/h=1.3

—> Response depends strongly on starting point shower

hadrons

ECAL
e/h =24

HCAL
e/h=123

Data from: CMS note 2007/012
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A crucial feature: No longitudinal segmentation

e Advantages:

- Compact construction
- No intercalibration of sections needed
- Calibrate with electrons and you are done

® Possible disadvantages:
- Dealing with pile-up (not an issue at ILC)

- Pointing for neutral particles
- Electron ID

However, a fine lateral granularity can do wonders
In addition:

e Time structure of the signals can provide crucial depth information



Depth of the light production
and the starting point of the PMT signals
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Use starting time PMT signal to determine the depth
of the light production and thus identify particle
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Use depth of light production to correct for light attenuation
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Methods to distinguish e/ in longitudinally unsegmented calorimeter

Lateral shower profile
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Particle ID using the time structure of the signals
in the longitudinally unsegmented SPACAL calorimeter
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Longitudinally segmented vs. unsegmented calorimeters

Arguments for segmentation
e Electron ID
e Optimize em section for high-resolution measurements

However

o Intercalibration segments problematic, to say the least (jet energy scale)

Attractive features of longitudinally UNSEGMENTED calorimeters

e Uniform structure throughout detector, crucial for avoiding calibration problems

o Fxcellent resolution, for all particles (needed in ILC experiments)
provided resolution is limited by sampling fluctuations

® Possibility to make very fine LATERAL granularity
— ¢electron ID no problem
—= recognize electron in vicinity of other showering particles
— separate closely spaced particles

The RD52 calorimeter offers almost unlimited possibilities in that respect



The extremely narrow electromagnetic shower profile

Lateral shower profile
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Conclusions

e A fine-sampling Cu-fiber dual-readout calorimeter offers the best and,
in my opinion the only, possibility to measure jets with energy
resolutions at the 1% level

® Resolutions needed to separate hadronically decaying W/Z bosons
are achievable with this instrument

® The same detector measures electrons and ys with EE > 50 GeV with
resolutions better than 2%

® The RD52 calorimeter is linear for all particles and easy to calibrate

e [t offers excellent identification of electrons, both in isolation and as
part of a jet

® The RD52 Collaboration expects to complete the proof of these statements

experimentally, which is the only way to prove anything concerning
hadron calorimetry

e [talian scientists have made major contributions to this project..
I hope that that can continue to be the case in the context of ILC






Signal in Tower 16 (a.u.)
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The extremely narrow electromagnetic shower profile

Move small beam spot across tower boundary
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Channeling effects in fiber calorimeters
DREAM
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Average calorimeter signal (Gel)

Calorimetric separation of ionization / radiation losses

Muon signals in the DREAM calorimeter
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Average scintillator signal
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High-resolution hadron calorimetry also requires efficient
detection of the “nuclear” shower component

Time structure of the DREAM signals: the neutron tail
(anti-correlated with f,,,)
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Figure 4: The average time structure of the Cerenkov and scintillation signals recorded for 200 GeV “jets” in the
fiber calorimeter (a). Scatter plot of the fraction of the scintillation light contained in the (20 ns) exponentional tail
versus the Cerenkov/scintillation signal ratio measured in these events () [9].



Probing the total signal distribution with the neutron fraction
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Figure 18: Distribution of the total Cerenkov signal for 200 GeV “jets” and the distributions for three subsets of
events selected on the basis of the fractional contribution of neutrons to the scintillator signal .
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On the energy measurement of hadron jets
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Abstract

The elementary constituents of hadronic matter (quarks, anti-quarks, gluons) manifest themselves experimentally in
the form of jets of particles. We investigate the precision with which the energy of these fragmenting objects can be
measured. The relative importance of the instrumental measurement precision and of the jet algorithm is assessed. We
also evaluate the ““energy flow” method, in which the information from a charged-particle tracker is combined with that

from a calorimeter in order to improve the jet energy resolution.
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From Conclusions:

Both our simulations and the experimental data
show that the EFM does offer a beneficial effect.
However, this effect should not be exaggerated.
The mmprovement in the energy resolution is
typically 30%. Poor calorimeter systems benefit
more than good calorimeter systems, and a strong
magnetic field also helps.

cf CMS vs ATLAS !!

No experimental evidence to the contrary!!

bosons and decreases at higher energies. Claims
that much better results may be achieved for
highly granular calorimeter systems, in which the
showers generated by the individual jet fragments
may be recognized and separated from each other
are unsubstantiated. We have shown that for most
of the showers in practical detectors, the overlap
between the shower profiles rather than the
detector granularity is the factor that limits the
benefits of this method.





