High Performance Vertexing Devices at the ILC

M. Winter IPHC-Strasbourg)

INFN-LC workshop - Como - 16-17 May 2013

Outline

- *Main (conflicting) specifications:*
 - Physics driven specs

• Running condition driven specs

- Accelerator related aspects:
 - Beam related background
 Time structure
- *R&D* goals and on-going activities:
 - Pixel sensors System integration
- Summary complemented with poorly covered WP

Linear Collider Specificities

- VERTEX DETECTOR NEEDED TO :
 - * reconstruct decay vertex of short lived particles decaying (mostly) near beam IP (typically at O(100) μm)
 - * reconstruct low momentum tracks barely reaching the - high resolution - main tracker (B \sim 3.5 - 5 T)
 - \hookrightarrow achieve high efficiency & purity flavour tagging \Rightarrow charm & tau !!!

- VERTEX DETECTOR SPECS : Ex: Couplings (SM-Higgs-like) particle to elementary bosons & fermions
 - * unprecedented granularity & material budget (very low power)
 - $_{*}\,$ much less demanding running conditions than at LHC (at least up to \sim 1 TeV)
 - \Rightarrow · alleviated read-out speed & radiation tolerance requests
 - possibility of coming very close to the IP

The Central Conflict of Vertexing

- A COMPLEX SET OF STRONGLY CORRELATED ISSUES :
 - * Charged particle sensor technology :
 - highly granular, thin, low power, swift pixel sensors
 - * Micro-electronics :
 - highly integrated, low power, SEE safe, r.o. μ circuits
 - * Electronics :

٠

٠

- high data transfer bandwith (no trigger), some SEE tol.
- low mass power delivery, allowing for power cycling
- * Mechanics :
- rigid, ultra-light, heat but not electrical conductive, mechanical supports, possibly with C_{\Delta t} \sum C^{Si}_{\Delta t}
- very low mass, preferably air, cooling system
- micron level alignment capability
- * EM compliance :
- power cycling in high B field \Rightarrow F(Lorentz)
- higher mode beam wakefield disturbance \Rightarrow pick-up noise ?
- * Radiation load and SEE compliance at T $_{room}$
- \Rightarrow reduced material budget

Linear Collider Precision Goal

- SPECIFIC BALANCE BETWEEN CONFLICTING REQUIREMENTS
 - * Privilege is given to physics driven specifications (esp. \leq 1 TeV)
 - * R&D rather performed to match running condition driven specifications
- LC vertexing goal : $\sigma_{R\phi,Z} \leq 5 \oplus 10 15/p \cdot sin^{3/2} \theta \ \mu m$

 \triangleright LHC: $\sigma_{R\phi} \simeq 12 \oplus 70/p \cdot sin^{3/2}\theta$

 \triangleright Compare $\sigma_{R\phi,Z}$ (ILD) with VXD made of ATLAS-IBL or ILD-VXD pixels

 \Rightarrow Significant improvement required wrt present LHC techno: GRANULAR (ϕ, z), THIN, LOW POWER

Machine Related Issues

- 2 DIFFERENT MACHINE PROJECTS DRIVEN BY THE LC COMMUNITY :
 - * ILC (\gtrsim 2026/27 Japanese roadmap) : \sim 0.2–0.5 \rightarrowtail 1 TeV
 - * CLIC : \sim 0.5 3 TeV
- Two main aspects govern the detector specifications :
 - * beam related backgrounds :
 - $\circ~{
 m e^+e^-}$ pairs and $\gamma\gamma$ collisions (CLIC)
 - o drive occupancy & radiation load

 \hookrightarrow annual load: O(100) kRad & O(10¹¹) n_{eq}/cm² (< 10⁻³ LHC load !!!)

- $_{*}$ beam time structure \Rightarrow < 1% duty cycle
 - - short bunch trains separated by "long" beamless periods
 - influences occupancy & allows substantial power saving
- IMPACT OF DIFFERENT ILC AND CLIC RUNNING CONDITIONS :
 - different vertex detector specification hierarchy
 - ⇒ different vertex detector geometry and sensor optimisations

5

Time Resolution Considerations

- TIMING REQUESTS ARE CENTRAL TRACKING AND COLLIDER DEPENDENT :
- OCCUPANCY MANAGEMENT:

* aim for pixel occupancy \leq few 10⁻² - 10⁻³ (tracking strategy dependent)

 \Rightarrow optimise read-out time \times pixel size (density) \times inner radius

Linear	Bunch train	N(BX)/train	Inter-bunch	Inter-train	Duty
Collider	Duration [μs]		Duration [ns]	Duration [ms]	Cycle
Ilc (500 GeV)	727	1312	554	200	0.36 %
ILC (1 TEV)	897	2450	366	200	0.45 %
Clic (3 TeV)	0.156	312	0.5	20	0.00031 %

- POWER MANAGEMENT :
 - * 2 options for ILC :
 - $\circ~$ signal read out continuously during train and detector \sim switched of inbetween trains
 - ⇒ target read-out time depends on tracking strategy: track seed in main tracker or vertex detector
 - charge stored in pixel during train & processed+transfered slowly inbetween trains (immune to potential EMI)
 - \Rightarrow constrains pixel size or/and in-pixel circuitry (timestamp)
 - * CLIC (3 TeV) : \leq 10 ns time (20 BX) resolution required \Rightarrow continuous read-out

 \Rightarrow strong impact on (fast) sensor technology

* General goal : O(10) mW/cm² average power to allow air flow cooling (mat. budget !)

6

LC Vertexing Devices

- MAIN CHARACTERISTICS OF ILC VERTEX DETECTORS:
 - * Geometry :
 - \cdot S \sim 0.5 m²; coverage: $\cos\theta \lesssim$ 0.98
 - SiD : short barrel complemented by 3 end-cap disks
 - ILD : long barrel geometry
 - \cdot R_{in} R_{out} \simeq 15–60 mm
 - 3 double-sided or 5 single-sided layers \rightarrow 0.1–0.15 % X₀/sgle-layer !
 - * Sensors :
 - $\cdot ~~\sigma_{R\phi,z} \lesssim$ 3 μm (20 μm pitch), 50 μm thin, O(10)mW/cm^2 (mean)
 - $\cdot ~~\Delta t \sim$ 10 μs (ILD) or \ll 10 μs (SiD) depending on tracking strat.
 - \cdot 2 r.o. alternatives : during or inbetween trains (option: 5×5 μm^2 pixels)
 - \cdot R&D on various sensor techno. & r.o. architectures: exploit t < construct.
- MAIN CHANGES NEEDED FOR CLIC VERTEX DETECTORS:
 - \cdot Sensors : $\Delta t \lesssim$ 10 ns !!!
 - Geometry : R_{in} R_{out} \simeq 30–60/80 mm; S \sim 0.7–1.1 m²
- MAIN R&D TOPICS ADDRESSED :
 - · high precision low power pixel sensors \rightarrowtail various optimisations
 - · mechanics and cooling
 - · power delivery and pulsing

SiD/ILC

CLIC

Power Delivery & Cycling

- PIXEL SENSORS : \sim 0.1–1 W/cm $^2 \Rightarrow$ 1-10 kW/m 2
 - \hookrightarrow would require active cooling, generating material budget overheads
- Exploit the very low duty cycle of the accelerator : ILC : few 10 $^{-3}$ CLIC : few 10 $^{-6}$
 - * EITHER very slow (\equiv low power) signal processing \Rightarrow postponed read-out inbetween trains
 - * OR fast signal processing during train (occupancy !) & detectors switched off between trains ≡ power pulsing/cycling
- SUBSTANTIAL DIFFICULTIES :
 - * Low power slow read-out imposes :
 - either \sim 5 μm pitch against occupancy \Rightarrow large Nb(pixels) read out in 200 ms
 - \Rightarrow long serial read-out fitting inbetween trains (// read-out tends to break power limit)
 - · or in-pixel circuitry to timestamp consecutive hits in same (larger) pixel

 \Rightarrow conflict between pixel dimensions fitting spatial resolution (small) and those fitting timing resolution (larger)

- * Continuous read-out with power cycling leads to :
- switching on & off a few grams light ladders in a high B field (3.5 5 T) \Rightarrow F(Lorentz) up to several tens of grams ...
- · distributing several hundreds of Amperes shortly before each train arrival
- heat cycle the ladders ...
- TESTS ALREADY STARTED :
 - * DEPFETS: power cycling test outside of magnet sucessful
 - * CMOS pixel sensor power cycling test foreseen in 2T magnet (AIDA project)
 - * CLIC inner tracking system test bench

CLIC power pulsing scheme

ILC oriented Pixel Sensor R&D

Fine versus High Precision Pixels

Fine Pixel CCDs: Main Features

- PROMINENT FEATURES OF FPCCDS:
 - $\circ\,$ Signal charge created in a fully depleted \sim 15 μm thin epitaxial layer
 - \Rightarrow limited charge spread
 - \circ Very small pixels (5×5 μm^2):
 - * $\sigma_{sp}\lesssim$ 1 μm
 - * beam related BG rejected by pattern recognition
 - $\circ\,$ High-res epi and small pixels (occupancy/BX \sim few ppm) used to integrate over full train duration
 - \Rightarrow devt addresses very low power ADCs
 - $\circ~$ Can be thinned down to 50 μm
 - $\circ~$ Need -40 $^{\circ}C$ cooling for radiation tolerance purposes
 - \Rightarrow impact on material budget (modest ?)
- SEVERAL ESSENTIAL R&D TOPICS ADDRESSED :
 - \circ 5×5 μm^2 pixel matrix detection performances
 - Low power, large bandwidth, r.o. electronics (e.g. 8-bit? ADC)
 - $\circ~\mbox{Low}~\mbox{mass}~\mbox{CO}_2$ cooling
- Approach not limited to CCDs: expected to work with CMOS sensors (cost effective, smaller pixels, cooling)

CMOS Pixel Sensors: Main Features

- PROMINENT FEATURES OF CMOS PIXEL SENSORS:
 - high granularity \Rightarrow excellent (micronic) spatial resolution
 - very thin (signal generated in 10-20 μm thin, high-res, epitaxial layer)
 - \circ signal processing μ -circuits integrated on sensor substrate
 - \Rightarrow impact on downstream electronics and syst. integration (\Rightarrow cost)
 - MIMOSA series based on rolling shutter read-out \Rightarrow low power
- CMOS PIXEL SENSOR TECHNOLOGY HAS A VERY HIGH POTENTIAL
 - \Rightarrow R&D largely consists in trying to exploit potential at best with accessible industrial processes
 - \hookrightarrow manufacturing parameters not optimised for particle detection:

epitaxy characteristics, feature size, N(ML), ... \Rightarrow breakthrough with 0.18 μm TJSC

• TECHNOLOGY ALREADY UNDER PROD/DEVT FOR UPCOMING DETECTORS:

Experiment	Pitch	$\sigma_{\mathbf{sp}}$	$\mathbf{t_{r.o.}}$	ladder	Da	adiation load	Area
-Detector	$[\mu m]$	[μm]	$[\mu s]$	X ₀ [%]	[MRad]	n_{eq}/cm^2	$[m^2]$
STAR-PXL ' 13	20.7	3.5	200	0.37%	0.15	$3 \cdot 10^{12}$ (30° C)	.16
ALICE-ITS '18	20-30	\sim 5	10-30	0.3%	0.7	10 ¹³ (30 [°] C)	0.5-10
Свм-М∨р '19	20-30	\sim 5	10-30	0.3-0.5%	\leq 10	\leq 10 $^{14} (\ll 0^{\circ}$ C)	\sim 0.5
ILD-500	16-80	<3	10-100	<0.15	0.1	10^{11} (30° C)	0.35
ILD-1000	16-80	<3	2-100	<0.15	> 0.3	few 10 11 (30 $^{\circ}$ C)	0.35

ionizing particle

o option for BESS-3, ATLAS/Phase-2 tracker, ...

Chronopixel Sensors: Main Features

- PROMINENT FEATURES OF CMOS PIXEL SENSORS:
 - CMOS Pixel Sensor with in-pixel (sgle BX) 12-bit time stamping
 - \Rightarrow tracking based on Vx detector seed (SiD option)
 - Read-out delayed inbetween consecutive bunch trains (power saving)
 - \circ Double-hit timestamping possibility (25×25 μm^2 pixels)
- REQUIRES A VERY ADVANCED (MIXED ?) CMOS TECHNOLOGY :
 - \circ VDSM (\leq 90 nm, with deep P-well), for high μ circuitry density
 - \hookrightarrow trade-off: pixel size (occupancy) vs in-pixel circuitry complexity
 - Epitaxial layer: thick and resistive enough for cluster spread and SNR
- CUSTOMISED DESIGN IN INDUSTRY (SARNOFF)
 - \Rightarrow cost, design optimisation possibility, devt timeline, ...

DEPFET Sensors: Main Features

- PROMINENT FEATURES OF DEPFET PIXEL SENSORS:
 - Signal charge created in a fully depleted Si substrate and collected by a n-type node ("internal gate") burried under a p-channel FET, delivering a current modulated (∞) by the charge collected on the node
 - External gate to enable read-out \Rightarrow r.o. chips
 - Clear contact removes charge from internal gate \Rightarrow switcher chip
 - Steering and signal processing ASICs bonded on ladder edge & end
 - \circ Read-out based on rolling shutter mode \Rightarrow low power
 - High granularity \Rightarrow micronic spatial resolution
 - $\circ~$ Can be thinned down to 50 μm
 - Sensors are embedded in Si mechanical support
 - \Rightarrow low material budget

- TECHNOLOGY UNDER PROD/DEVT FOR THE BELLE-II VERTEX DETECTOR:

CLIC oriented Pixel Sensor R&D

(See also CLIC talk)

CLIC Motivated R&D: Hybrid Approach

- Motivated by the \lesssim 10 ns time resolution needed at CLIC
- As compared to existing/forthcoming devices, the R&D addresses :
 - $_{*} \lesssim$ 10 times smaller pixels
 - $* \lesssim$ 10 times smaller material budget
- Some major R&D lines :
 - * Thinned high-resistivity fully depleted substrates available commercially
 - \Rightarrow develop handling and bonding procedures
 - * R&D on fast, low-power r.o. ASICs in VDSM CMOS processes
 - TimePix3 (2013) : 130 nm IBM, 55 μm pitch
 - SmallPix (2013) : 130 nm IBM, \lesssim 40 μm pitch
 - Dash ClicPix (\sim 2015) : 65 nm process, 25 μm pitch
 - \hookrightarrow demonstrator prototype (2013) : 64 \times 64 pixel array
 - * R&D on low-mass, high-density interconnects :
 - TSV, μ bump bonding, Cu pillars, ...

CLIC Motivated R&D : 3DIT

- HIGH POTENTIAL APPROACH CONSISTING IN STACKING CHIPS INTERCONNECTED AT PIXEL LEVEL
- MAJOR R&D ISSUES :
- * Investigate 3D Integrated technologies
 - \hookrightarrow Through Silicon Vias (TSV)
- Allows combining thin tiers dedicated to specific & complementary functionalities: charge sensing, analog r.o., digital proc., ...
- * Allows integrating high density signal processing μ circuits in small pixels !

- DEVELOPMENT STARTED IN 2009 (3DIC CONSORTIUM) from various sensing technologies (hybrid, CMOS, ...)
 - * facing interconnectivity difficulties \rightarrow 2-tier chips back recently: 1st test results satisfactory \Rightarrow devt can continue
 - * R&D also of interest for ILC (1 TeV) and for LHC/Phase-2
- EMERGING PERSPECTIVE: VDSM PROCESSES
 ON THIN (50 μm) FULLY DEPLETED SUBSTRATE
 (commercial cameras, X-ray imagers)
 ⇒ STAY TUNED

 \Rightarrow

Sensor Integration in Ultra Light Devices

- 2-sided ladders with combined spatial & time resolutions :
 - * manyfold bonus expected from 2-sided ladders:
 - compactness, alignment, pointing accuracy (shallow angle), redundancy, etc.
 - ★ studied by PLUME coll. (Oxford, Bristol, DESY, IPHC) & AIDA (EU)
 ← Pixelated Ladder using Ultra-light Material Embedding
 - * square pixels for single point resolution on beam side
 - * elongated pixels for 4-5 times shorter r.o. time on other side
 - * correlate hits generated by traversing particles
 - st expected total material budget \sim 0.3 % X $_0$
 - \longrightarrow 1st proto. (0.6 % X₀) fabricated & operationnal
 - > validated on beam at CERN-SPS (traversing m.i.p.)
- Optical fiber based alignment monitoring :
 - * Embedded Fiber Bragg Grating sensors on carbon fiber struct. (CFRP) for deformation & T monitoring used in aeronautics & civil engineering
 - * Precise online measurement of mecha. support deformations
 - \Rightarrow optimise material budget of mechanical supports
 - * Pple: measure shift in reflected Bragg wavelength due to change in refraction index & periodicity of index variation

SUMMARY

- LC vertex detectors drive a specific/innovative R&D on highly pixelated position sensitive devices :
 - * Sensors: $20 \times 20 \mu m^2$ pixels $\Rightarrow \sigma_{sp} \lesssim 3 \mu m$, $50 \mu m$ thin, low power, 3DIC (VDSM), 2-sided ladders, ...
 - * System integration: ultra-light ladders (0.1–0.2 % X₀/layer), fast power cycling in magnetic field, ...
- Timelines :
 - * ILC (less demanding) : main goals seem \pm achievable by \lesssim 2015 but quite so room for improvement
 - * **CLIC-3TeV (more demanding) :** > 100 times faster read-out speed required (granularity × speed conflict) \Rightarrow R&D on chip interconnects and power saving \rightarrow viable solutions by 2020 (?)
- Numerous spin-offs :
 - * Subatomic physics : high-precision BT, STAR, Belle-II, ALICE, CBM, BESS-3, ..., LHC Phase-2 ?, ...
 - * Other areas : hadrontherapy, light source infrastructure instrumentation, photon counting cameras, ...
- \Rightarrow Considerable progress already achieved in last 10 yrs \Rightarrow expect similar step until 2020 !
- Performance level achievable before detector construction will strongly depend on the importance of community efforts (striking lack of manpower at present)
 - ⇒ IMPORTANT MEETINGS: ECFA-LC WORKSHOP (END OF MAY), LCWS-2013 (NOVEMBRE)

Pending Instrumental Developments

- PIXELS :
 - * Fine Pixel CPS : more granular, less expensive, more flexible than FPCCDs
 - * fast sensors (\gtrsim 1 μs) adapted to standalone tracking (\leq 500 GeV) or 1 TeV running
- LADDERS :
 - * material budget reduction, micro-channel cooling, alignment controls
- POWER CYCLING :
 - * mechanical effect of high magnetic field
 - * solutions to minimise the effect (sensor design, ladder design)
- POWER MANAGEMENT :
 - * low mass P delivery design
 - st pulsed power distribution (> 100 A) over the detector

Pending Concept Optimisation Tasks

- PERFORMANCE OPTIMISATION :
 - * ILD : inner tracker tracking using tracks extrapolated from TPC rather than standlone tracking
 - * tracking using rolling shutter
- BACKGROUND HANDLING :
 - * tracking strategy mitigating the effect of beamstrahlung electrons
 - * effect of pile-up over several BX \Rightarrow max occupancy allowed with continuous & power pulsed read-out

(different pixel dimensions)

- PIXELATED VERSION OF SIT (ILD) :
 - * compare pixel option with pile-up versus less accurate strip variant identifying each bunch
- ALTERNATIVE GEOMETRIES MERITS :
 - * elongated barrel versus short barrel + disks
 - * solutions to minimise the effect (sensor design, ladder design)
 - ⇒ Determine reliable vertex detector specifications: sensors, ladders, system integration, etc.

Possible Timeline

- Non-political evaluation of 2 Japanese candidate sites complete, followed by down-selecting to one
- End 2013
 - Japanese government announces its intent to bid
- 2013~2015
 - Inter-governmental negotiations
 - Completion of <u>R&Ds</u>, preparation for the ILC lab.
- ~2015
 - Inputs from LHC@14TeV, decision to proceed
- 2015~16
 - Construction begins (incl. bidding)
- 2026~27
 - Commissioning

Fine versus High Precision Pixels

