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The CLIC detector and physics study

• Pre-collaboration structure based on “Memorandum of Cooperation” (MoC):
http://lcd.web.cern.ch/lcd/Home/MoC.html
• CERN acts as host laboratory
• At the moment 17 institutes from 14 countries, more contributors most welcome!

http://lcd.web.cern.ch/lcd/Home/MoC.html
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CLIC detector R&D as part of the LC work
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The CLIC CDR

The CLIC CDR was published in 2012:
• Volume 1: A Multi-TeV Linear Collider based on CLIC Technology,
CERN-2012-005, http://cds.cern.ch/record/1500095
• Volume 2: Physics and Detectors at CLIC, CERN-2012-003,
http://cds.cern.ch/record/1425915
• Volume 3: The CLIC Programme: towards a staged e+e- Linear Collider exploring 
the Terascale, CERN-2012-005, http://cds.cern.ch/record/1475225
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Selected CLIC parameters

Drive timing
requirements
for CLIC detector

CLIC at 3 TeV

L (cm-2s-1) 5.9 · 1034

Bunch separation 0.5 ns

#Bunches / train 312

Train duration 156 ns

Train rep. rate 50 Hz

Crossing angle 20 mrad

Particles / bunch 3.72 · 109

σ
x
/σ

y
 (nm) ≈ 45 / 1

σ
z 
(μm) 44

Very small beam profile
at the interaction point
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Luminosity spectrum

Significant energy loss at the interaction point due to Beamstrahlung

Full luminosity: L = 5.9 · 1034 cm-2s-1

In the most energetic 1%:
(“peak luminosity”) L

0.01
 = 2.0 · 1034 cm-2s-1

Most physics processes are studies
well above the production threshold
→ Profit from (almost) full luminosity

s '=4⋅E 1⋅E 2
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Beam related backgrounds

• e+e- pairs
• γγ → hadrons
• Beam halo muons

Coherent e+e- pairs:
7 · 108 per BX, very forward
Incoherent e+e- pairs:
3 · 105 per BX, rather forward
→ Detector design issue
(high occupancies)

γγ → hadrons
• “Only” 3.2 per BX at 3 TeV
• Main background
in calorimeters and trackers
→ Impact on physics BX = bunch crossing
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CLIC physics potential
Advantage of e+e- collisions:
• Defined initial state
• Precision measurements possible due to clean conditions
• Well suited for weakly interacting states (e.g. sleptons, gauginos)
• Polarised (electron) beam
→ Complementary / enhanced discovery 
reach compared to the LHC

Examples highlighted in the CDR:
• Higgs physics (SM and non-SM)
• Top physics
• SUSY
• Higgs strong interactions
• Z'
• Contact interactions
• Extra dimensions
• …
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Higgs production at CLIC
350 GeV 1400 GeV 3000 GeV

At 350 GeV: Mostly HZ,
allows to reconstruct Higgs from 
recoil mass

At higher energies:
• WW fusion dominates, 
high number of Higgs bosons 
• ZZ fusion about an order
of magnitude smaller
• The extraction of the
Higgs self-coupling from HHvv 
becomes possible

1.4 TeV: Suitable to measure
the top Yukawa coupling using
ttH events
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Higgs benchmark results
Energy Observable Precision

350 GeV σ(HZ) 4%

mass (from recoil) 120 MeV

σ x BR(H → τ+τ-) 5.7%

500 GeV σ(HZ) / σ(Hvv) 5%

mass 100 MeV

1.4 TeV σ x BR(H → τ+τ-) <3.7%

self-coupling λ 30%

σ(ttH) ≈8% (estimated from 
ILC study at 1 TeV)

3 TeV σ x BR(H → bb) 0.2%

σ x BR(H → cc) 3.2%

σ x BR(H → μ+μ-) 15%

self-coupling λ 16%

• All results based on full detector simulations (Geant4) and considering pileup
from beam-induced backgrounds
• All results for unpolarised beams, σ(Hvv) and σ(HHvv) about 80% larger for
-80% polarisation of the electron beam

3 TeV

3 TeV
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CLIC physics performance for the SM Higgs

Ongoing effort to investigate the full physics performance of CLIC for SM Higgs 
boson measurements at 350, 1400 and 3000 GeV:

350 GeV:
• Model-independent mass and cross section from recoil method
• H → bb, H → cc, H → gg, BR(H → τ+τ-), H → WW*

1.4 GeV:
• H → bb, H → cc, H → gg, BR(H → τ+τ-), H → WW*, H → Zγ, H → γγ, H → μ+μ-

• top Yukawa coupling from the ttH cross section
• Higgs self-coupling from HHvv cross section (improvements by refined analysis expected)
• Higgs production in ZZ-fusion

3 TeV:
• H → bb, H → cc, H → gg, H → WW*, H → μ+μ-

• Higgs self-coupling from HHvv cross section (improvements by refined analysis expected)

In addition:
• Extraction of the Higgs width at all energies
• Extraction of the Higgs couplings from combined fit to all measurements

Expect full set of results in the summer



17/05/2013 Philipp Roloff ILC & more miniworkshop 12

SUSY benchmark scenarios

One of the two models 
investigated at 3 TeV

Model investigated at 1.4 TeV:
sleptons and light
gauginos accessible

√s (GeV) √s (GeV)
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SUSY benchmark studies at 1.4 TeV

L = 1.5 ab-1
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SUSY benchmark studies at 3 TeV

L = 2 ab-1
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Physics aims → detector needs

  pT 

pT
2 ~2×10−5GeV −1

 E
E

~3.5−5% for E=1000−50GeV

 d 0=a2b2⋅GeV 2/  p 2sin3 , a≈5m ,b≈15m

• Momentum resolution
(e.g. Higgs recoil mass, H → μ+μ-,
leptons from BSM processes)

• Jet energy resolution
(e.g. W/Z/h separation)

• Impact parameter resolution
(b/c tagging, e.g. Higgs couplings)

• Lepton identification, very forward electron tagging

√s = 500 GeV



17/05/2013 Philipp Roloff ILC & more miniworkshop 16

Physics aims → detector needs

  pT 

pT
2 ~2×10−5GeV −1

 d 0=a2b2⋅GeV 2/  p 2sin3 , a≈5m ,b≈15m

• Momentum resolution
(e.g. Higgs recoil mass, h → μ+μ-,
leptons from BSM processes)

• Jet energy resolution
(e.g. W/Z/h separation)

• Impact parameter resolution
(b/c tagging, e.g. Higgs couplings)

• Lepton identification, very forward electron tagging

 E
E

~3.5−5% for E=1000−50GeV



17/05/2013 Philipp Roloff ILC & more miniworkshop 17

Physics aims → detector needs

  pT 

pT
2 ~2×10−5GeV −1

 d 0=a2b2⋅GeV 2/  p 2sin3 , a≈5m ,b≈15m

• Momentum resolution
(e.g. Higgs recoil mass, h → μ+μ-,
leptons from BSM processes)

• Jet energy resolution
(e.g. W/Z/h separation)

• Impact parameter resolution
(b/c tagging, e.g. Higgs couplings)

• Lepton identification, very forward electron tagging

 E
E

~3.5−5% for E=1000−50GeV



17/05/2013 Philipp Roloff ILC & more miniworkshop 18

Challenges in CLIC (LC) detector R&D

These requirements lead to the following challenges:

Vertex and tracker
• Very high granularity
• Dense integration of functionalities
including ≈10 ns time-stamping
• Super light materials
• Low-power design & power pulsing
• Air cooling

Calorimetry
• Fine segmentation in R, Φ and Z
• Time resolution ≈1 ns
• Ultra-compact active layers
• Pushing integration to the limits
• Power pulsing

ultra-light

ultra-heavy and compact
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Comparison CLIC and LHC detector

CLIC detector: LHC detector:
High precision Medium-high precision
• Jet energy resolution • Very precise ECAL (CMS)
→ fine-grained calorimetry • Very precise muon tracking (ATLAS)
• Momentum resolution
• Impact parameter resolution

Pileup of minimum-bias events 
Pileup of beam-induced backgrounds • High background rates, high
• High background rates, medium energies energies
• High occupancies • High occupancies
• Can not use vertex separation • Can use separation in Z
• Need very precise timing (1 ns, 10 ns) • Need precise time-stamping (25 ns)

“No” issue of radiation damage (10-4 LHC) Severe challenge of radiation 
• Except small forward calorimeters damage

Beam crossing “sporadic” Continuous beam crossings

No trigger, read-out full 156 ns train Trigger needed for huge data 
reduction
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CLIC detector concepts
Based on validated ILC designs, adapted and optimised to the CLIC conditions:
• Denser HCAL in the barrel (Tungsten, 7.5 λ)
• Redesign of the vertex and forward detectors (backgrounds)
• Precise timing capabilities of most subdetectors

CLIC_ILD
CLIC_SiD
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Background suppression

Triggerless readout of full bunch train:

t
0
 of physics event

1.) Identify t
0
 of physics event in offline event filter

• Define reconstruction window around t
0

• All hits and tracks in this window are passed to the reconstruction
→ Physics objects with precise p

T
 and cluster time information

2.) Apply cluster-based timing cuts
• Cuts depend on particle-type, p

T
 and detector region

→ Protects physics objects at high p
T

tCluster
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Time windows and hit resolutions

Used in the reconstruction software for CDR simulations:

• CLIC hardware requirements
• Achievable in the calorimeters with a
sampling every ≈ 25 ns
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Impact of the timing cuts

e+e- → H+H- → tbbt (8 jet final state)

1.2 TeV background
in the reconstruction
window

100 GeV background
after (tight) timing cuts
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CLIC pixel sensor R&D
Hybrid approach:
• Thin (≈ 50 μm) sensors (e.g. Micron, CNM)
• Thinned high density ASIC in very-deep-sub-micron:

- R&D steps: TimePix3, Smallpix
- CLICPix

• Low-mass interconnect:
- Micro-bump-bonding
- Through-Silicon-Vias (R&D with CEA-Leti)
- Chip-stitching

• Power pulsing and air cooling foreseen

CLICpix:
• 65 nm technology
• 25 x 25 μm2 pixels
• 4-bit TOA and TOT information
(10 ns time-slicing)
• Continous power: 2 W/cm2

• With power pulsing: 50 mW/cm2

64 x 64 pixel demonstrator:
Chip produced by TSMC,
development of DAQ ongoing

Analog part of a CLICpix pixel
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Low-mass cooling
P ≈ 500 W in the vertex detectors

CLI\C_ILD

ANSYS finite element 
simulation of air-flow cooling:
• Spiral disk geometry
→ allows for air flow into barrel
• Sufficient heat removal
• Validation of simulation (temperature, 
vibrations etc.) with mock-up foreseen

vertex barrel layers

T = 20° C

T = 0° C

T
in
 =

 0
° 

C
, m

fl
o

w
 =

 2
0 

g
/s
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Power pulsing and delivery

• CLICPix: ≈2 A at 1.2 V for 15 μs
• DC-DC converter (outside the vertex detector region)
• Flex cable
• LDOs + capacitors
• 0.07% X

0
 with technology available today (Si capacitors)
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Vertex detector geometry

5 single layers 3 double layers

Recently started to investigate the impact of the vertex detector
geometry on the flavour tagging performance:
• Impact of material budget on flavour tagging performance
• Test impact of spiral geometry on physics performance
• Comparison of single layer and double layer geometry

Example: Ratio of mis-identification rates for 
charm-tagging using 100 GeV jets
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Scintillator ECAL study

Silicon surface in ECAL: • 2600 m2 in CLIC_ILD
• 1100 m2 in CLIC_SiD

For comparison: CMS tracker has 200 m2 silicon surface

→ Mayor cost driver for the detectors

New effort: Rethink ECAL design for cost optimisation
Use or combine scintillator instead of silicon readout system?

Simulation studies: Comparison of cell sizes, transverse 
segmentation, …

Hardware: Which minimal size the tiles is possible?

Common ILC-CLIC CALICE working group: 
http://indico.cern.ch/categoryDisplay.py?categId=4379
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ECAL study: first impressions

Lab at 
CERN

Simulation studies

SiW ECAL, plan to 
repeat for ScW ECAL

Measurements in dark room:
source with momentum
selection capability
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Analog HCAL: scintillator/tungsten

• HCAL tests with 10 mm  
tungsten absorber plates
• Tests in 2010 (PS) and 2011 (SPS)
with scintillator active layers, 3 x 3 cm2 cells,
analog readout

long. Shower profile (π+) vis. energy (protons)

→ good agreement
with Geant4
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Digital HCAL: scintillator/RPC

• 54 glass RPC chambers, 1 m2 each
• Pad size 1 x 1 cm2

• Digital readout (1 threshold),
100 ns time slicing
• Main DHCAL stack (39) and tail
catcher (15)
• 500000 readout channels
• Tests in 2012 at CERN PS and SPS
with tungsten absorber
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Test of the di-jet mass reconstruction

Chargino and neutralino pair production:

82%

17%

Reconstruct W±/Z/h in hadronic decays
→ four jets and missing energy

Precision on the measured
gaugino masses (few hundred GeV):
1 - 1.5%
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Solenoid coil

Conductor size compared to ATLAS

Shear test

Extrusion of Al-Ni stabilised conductor

Change in material properties of Al and 
Al-Ni before and after cold-working

Material property tends to behave as expected
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Summary and conclusions

• Physics at an CLIC e+e- from 350 GeV to 3 TeV can be measured 
with high precision, despite challenging background conditions

• Backgrounds studied in detail:

- Require high granularity in space and time
- Define detector requirements and guide future R&D 

• The performance of the CLIC detector concepts was
demonstrated using detector benchmark reactions

• Ongoing project phase (2012-2016):
- CLIC detector R&D (within the international LC R&D program)
- Further physics studies (LHC input) + detector optimisation
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Backup slides
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General readout considerations

3.2 γγ → hadr. interactions
per bunch crossing:

• 19 TeV in the calorimeters
per 156 ns bunch train

• 5000 tracks with a total
momentum of 7.3 TeV

Triggerless readout of full bunch train:
• Time-stamping in tracking detectors and calorimeters
• Multi-hit storage / readout
• Filtering algorithms at reconstruction level (→ later)
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Vertex detector requirements

CLIC_ILD:
Vertex & forward tracking

Requirements:
• 25 x 25 μm2 pixel size
• Material: 0.2% X

0
 per layer (sensor & support):

- Very thin materials / sensors
- Low-power design, power pulsing, low-mass cooling

• Time stamping precision: ≈10 ns (to reject backgrounds)
• Radiation level: ≈1010 n

eq
 /cm2 /yr (10-4 of LHC) 
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Vertex detector backgrounds
Incoherent pair background determines:
Locations of vertex detector & forward tracking disks, design of beam pipe

CLIC_ILD

Beam pipe

Barrel VTX

• Pair background mostly at low radii

• Inner radius of barrel vertex detector:
31 mm (CLIC_ILD), 27 mm (CLIC_SiD)

• Barrel: up to 1.9% train occupancy / pixel
• Forward: up to 2.9% train occupancy / pixel
(including safety factors of 5)
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Vertex detector layouts

CLIC_ILD: 3 double layers, 1.84 · 109 pixels

CLIC_SiD: 5 single layers, 2.76 · 109 pixels
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Tracking in CLIC_ILD

TPC + silicon tracking in 4T field Time
projection
chamber
(TPC)

Performance goal on
momentum resolution
achieved
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Occupancies in the TPC

Plots are for Gas Electron Multiplier (GEM) + Pad readout, voxels of 25 ns

→ A TPC at CLIC may need a larger inner radius or very small pads
Similar study with micromegas + pixel readout is starting

The readout time of the TPC is much longer than a CLIC bunch train
→ The TPC integrates the background of a full train at CLIC
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Tracking in CLIC_SiD
All silicon tracker in 5T field:
• Vertex detector and tracker
viewed as one system
• Combined seeding and tracking

Two readout (KPiX) chips bump
bonded to the sensor

Performance goal on
momentum resolution
achieved
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HCAL resolution
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Calorimetry: technology

ECAL:
• Silicon pads or scintillator
• Tungsten absorber
• Cell sizes: 25 mm2 (CLIC_ILD)

13 mm2 (CLIC_SiD)
• 30 layers in depth
• 23 X

0
 and 1 λ

HCAL:
• Several options for sensors
• Tungsten (barrel), steel (forward)
• Cell sizes: 9 cm2 (analog)

1 cm2 (digital)
• 60 - 75 layers in depth
• 7.5 λ

SiD ECAL
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Time development in hadronic showers

• In steel 90% of the energy is recorded within 6 ns (corrected for time-of-flight)
• In tungsten only 82% of the energy is deposited within 25 ns:
(much larger component of the energy in nuclear fragments)
→ Energy resolution degrades if not the majority of calorimeter hits is read

→ Need to integrate over ≈100 ns in the reconstruction, keeping the background 
level low

Steel-Scint HCAL W-Scint HCAL
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Software compensation
High granularity of the calorimeter can be used to distinguish between
electromagnetic (dense) and hadronic (less dense) shower components

CALICE
Steel-AHCAL data 

Improved resolution (20% better) and linearity
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PFO based timing cuts
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Influence of pileup
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Jet reconstruction at CLIC I

Timing
cuts

Two jets + missing energy

• Using Durham k
T
 à la LEP

→ Timing cuts are effective,
but not sufficient
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Jet reconstruction at CLIC II

Timing
cuts

Two jets + missing energy

• Using Durham k
T
 à la LEP

→ Timing cuts are effective,
but not sufficient

• “hadron collider” k
T
, R = 0.7

→ Background significantly
reduced further
→ Need timing cut + jet finding
for background reduction 
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W+W- and ZZ
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Test of the lepton reconstruction

• Slepton production very clean at CLIC
• SUSY “model II”: slepton masses ≈ 1 TeV
• Investigated channels include:

• Leptons and
missing energy
• Masses from
endpoints of
energy spectra

Example: Smuons
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Complex final states
Heavy Higgs bosons: Flavour tagging crucial!
e+e- → HA → bbbb
e+e- → H+H- → tbbt

Accuracy of the heavy Higgs mass measurements: ≈ 0.3%
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