

The CLIC detector and physics study

Philipp Roloff (CERN) on behalf of the CLIC detector and physics study

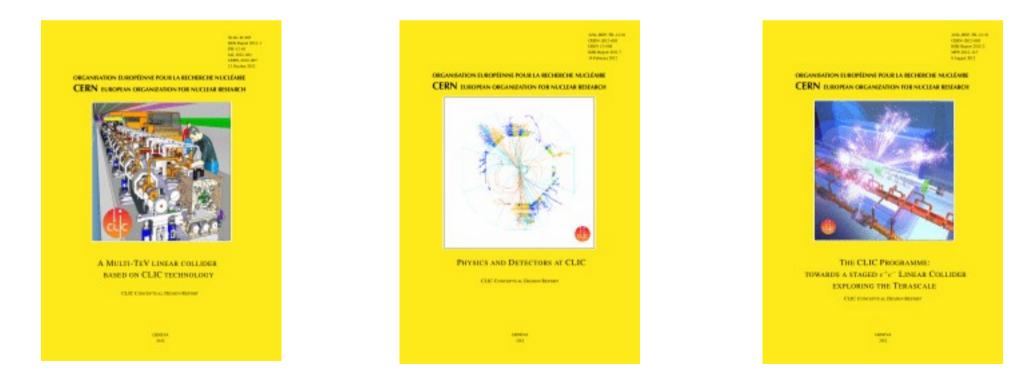
The CLIC detector and physics study

• Pre-collaboration structure based on "Memorandum of Cooperation" (MoC): http://lcd.web.cern.ch/lcd/Home/MoC.html

- CERN acts as host laboratory
- At the moment 17 institutes from 14 countries, more contributors most welcome!

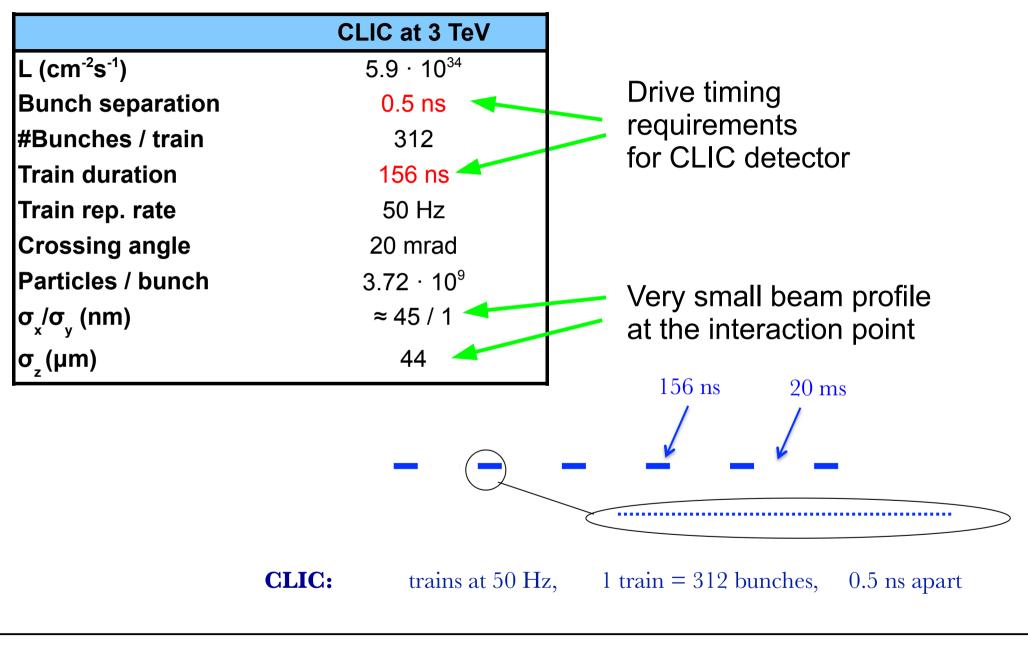
CLIC detector R&D as part of the LC work

The CLIC CDR



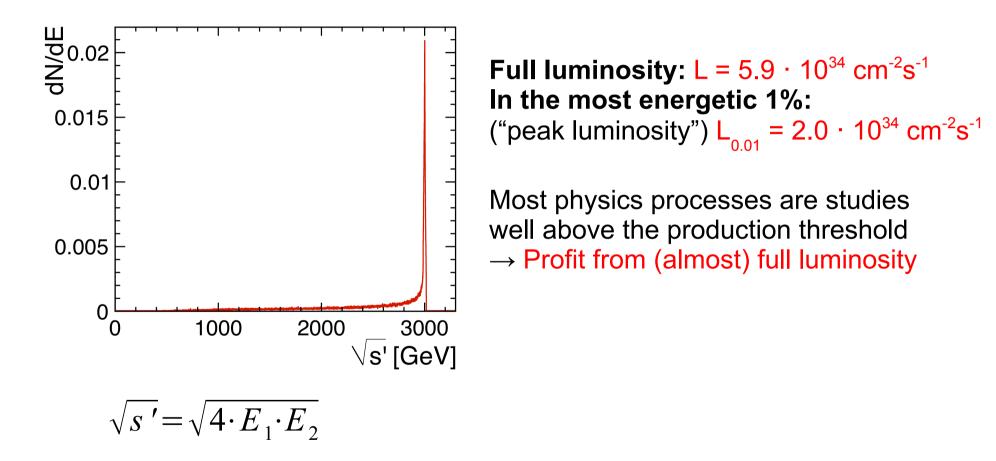
The CLIC CDR was published in 2012:

• Volume 1: A Multi-TeV Linear Collider based on CLIC Technology, CERN-2012-005, http://cds.cern.ch/record/1500095

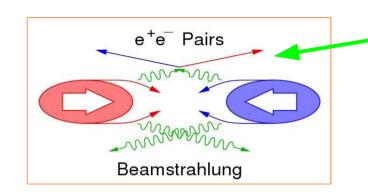

• Volume 2: Physics and Detectors at CLIC, CERN-2012-003, http://cds.cern.ch/record/1425915

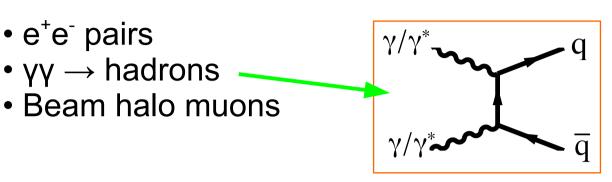
• Volume 3: The CLIC Programme: towards a staged e⁺e⁻Linear Collider exploring the Terascale, CERN-2012-005, http://cds.cern.ch/record/1475225

Selected CLIC parameters

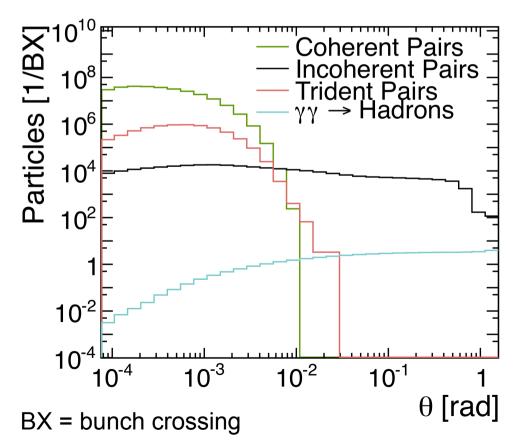

17/05/2013

Philipp Roloff ILC & more miniworkshop


Significant energy loss at the interaction point due to **Beamstrahlung**



Beam related backgrounds



Coherent e^+e^- pairs: 7 · 10⁸ per BX, very forward Incoherent e^+e^- pairs: 3 · 10⁵ per BX, rather forward \rightarrow Detector design issue (high occupancies)

$\gamma\gamma \rightarrow hadrons$

- "Only" 3.2 per BX at 3 TeV
- Main background in calorimeters and trackers
- \rightarrow Impact on physics

CLIC physics potential

Advantage of e⁺e⁻ collisions:

- Defined initial state
- Precision measurements possible due to clean conditions
- Well suited for weakly interacting states (e.g. sleptons, gauginos)
- Polarised (electron) beam

→ Complementary / enhanced discovery reach compared to the LHC

Examples highlighted in the CDR:

- Higgs physics (SM and non-SM)
- Top physics
- SUSY
- Higgs strong interactions
- Z'
- Contact interactions
- Extra dimensions

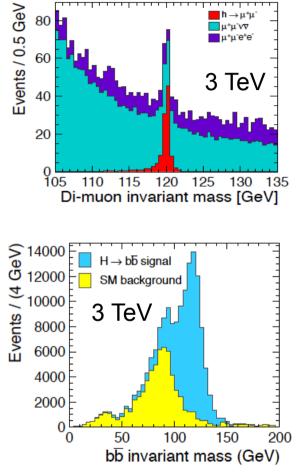
•

Higgs production at CLIC

allows to reconstruct Higgs from recoil mass At higher energies:

At 350 GeV: Mostly HZ,

- WW fusion dominates, high number of Higgs bosons
- ZZ fusion about an order of magnitude smaller
- The extraction of the Higgs self-coupling from HHvv becomes possible
- **1.4 TeV:** Suitable to measure the top Yukawa coupling using ttH events



Higgs benchmark results

Energy	Observable	Precision
350 GeV	σ(HZ)	4%
	mass (from recoil)	120 MeV
	$\sigma \text{ x BR}(H \rightarrow \tau^{+}\tau^{-})$	5.7%
500 GeV	$\sigma(HZ) / \sigma(Hv\overline{v})$	5%
	mass	100 MeV
1.4 TeV	$\sigma \ge BR(H \rightarrow T^{+}T^{-})$	<3.7%
	self-coupling λ	30%
	σ(ttH)	≈8% (estimated from ILC study at 1 TeV)
3 TeV	$\sigma x BR(H \rightarrow b\overline{b})$	0.2%
	$\sigma \text{ x BR}(H \rightarrow c\overline{c})$	3.2%
	$\sigma \ge BR(H \rightarrow \mu^{+}\mu^{-})$	15%
	self-coupling λ	16%

• All results based on full detector simulations (Geant4) and considering pileup from beam-induced backgrounds

• All results for unpolarised beams, $\sigma(Hvv)$ and $\sigma(HHvv)$ about 80% larger for -80% polarisation of the electron beam

Ongoing effort to investigate the full physics performance of CLIC for SM Higgs boson measurements at 350, 1400 and 3000 GeV:

350 GeV:

- Model-independent mass and cross section from recoil method
- $H \rightarrow b\overline{b}, H \rightarrow c\overline{c}, H \rightarrow gg, BR(H \rightarrow T^{+}T^{-}), H \rightarrow WW^{*}$

1.4 GeV:

- $H \rightarrow b\overline{b}, H \rightarrow c\overline{c}, H \rightarrow gg, BR(H \rightarrow \tau^{+}\tau^{-}), H \rightarrow WW^{*}, H \rightarrow Z\gamma, H \rightarrow \gamma\gamma, H \rightarrow \mu^{+}\mu^{-}$
- top Yukawa coupling from the ttH cross section
- Higgs self-coupling from HHvv cross section (improvements by refined analysis expected)
- Higgs production in ZZ-fusion

3 TeV:

• $H \rightarrow b\overline{b}, H \rightarrow c\overline{c}, H \rightarrow gg, H \rightarrow WW^*, H \rightarrow \mu^+\mu^-$

• Higgs self-coupling from HHvv cross section (improvements by refined analysis expected)

In addition:

- Extraction of the Higgs width at all energies
- Extraction of the Higgs couplings from combined fit to all measurements

Expect full set of results in the summer

SUSY benchmark scenarios

 10^{3}

 10^{2}

 10^1

 10^{0}

 10^{-1}

10⁻²

5

500

1000

cross section (fb)

SUSY Model 3

Higgs

 $\tilde{\tau}, \tilde{\mu}, \tilde{e}$

SM

 $\tilde{\nu}_{\tau}, \tilde{\nu}_{\mu}, \tilde{\nu}_{\mu}$

neutralinos

charginos

squarks

One of the two models investigated at 3 TeV

Model investigated at 1.4 TeV: sleptons and light gauginos accessible

2000

2500

3000

 \sqrt{s} (GeV)

1500

 \sqrt{s} (GeV)

120 GeV Higgs

 $t\bar{t}$

SUSY benchmark studies at 1.4 TeV

C	LC		

\sqrt{s} (TeV)	Process	Decay mode	SUSY model	Measured quantity	Unit	Gene- rator value	Stat. error	
		$\widetilde{\mu}_{R}^{+}\widetilde{\mu}_{R}^{-} ightarrow\mu^{+}\mu^{-}\widetilde{\chi}_{1}^{0}\widetilde{\chi}_{1}^{0}$		$egin{array}{c} \pmb{\sigma} \ ilde{\ell} \ { m mass} \ ilde{\chi}_1^0 \ { m mass} \end{array}$	fb GeV GeV	1.11 560.8 357.8	2.7% 0.1% 0.1%	
1.4	Sleptons production	$\widetilde{e}_R^+\widetilde{e}_R^- ightarrow e^+e^-\widetilde{\chi}_1^0\widetilde{\chi}_1^0$	III	$\sigma \ ilde{\ell} ext{ mass } \ ilde{\ell}^0 ext{ mass } \ ilde{\chi}^0_1 ext{ mass } \ i$	fb GeV GeV	5.7 558.1 357.1	$\begin{array}{c} 1.1\% \\ 0.1\% \\ 0.1\% \end{array}$	
		$\widetilde{ u}_e\widetilde{ u}_e ightarrow \widetilde{\chi}_1^0\widetilde{\chi}_1^0 e^+e^-W^+W^-$		$\sigma \ ilde{\ell} ext{ mass } \ ilde{\chi}_1^{\pm} ext{ mass }$	fb GeV GeV	5.6 644.3 487.6	3.6% 2.5% 2.7%	
1.4	Stau production	$\widetilde{ au}_1^+ \widetilde{ au}_1^- o au^+ au^- \widetilde{oldsymbol{\chi}}_1^0 \widetilde{oldsymbol{\chi}}_1^0$	III	$\widetilde{ au}_1$ mass $oldsymbol{\sigma}$	GeV fb	517 2.4	2.0% 7.5%	
1.4	Chargino production	$\widetilde{\chi}_1^+ \widetilde{\chi}_1^- o \widetilde{\chi}_1^0 \widetilde{\chi}_1^0 W^+ W^-$	III	$\widetilde{\chi}_1^\pm ext{ mass } \sigma$	GeV fb	487 15.3	0.2% 1.3%	
	Neutralino production	$\widetilde{\chi}^0_2\widetilde{\chi}^0_2 o h/Z^0 h/Z^0\widetilde{\chi}^0_1\widetilde{\chi}^0_1$		$\widetilde{\chi}_2^0$ mass σ	GeV fb	487 5.4	$0.1\% \\ 1.2\%$	L = 1.5 ab

17/05/2013

SUSY benchmark studies at 3 TeV

\sqrt{s} (TeV)	Process	Decay mode	SUSY model	Measured quantity	Unit	Gene- rator value	Stat. error
		$\widetilde{\mu}_{R}^{+}\widetilde{\mu}_{R}^{-} ightarrow\mu^{+}\mu^{-}\widetilde{\chi}_{1}^{0}\widetilde{\chi_{1}}^{0}$		$\sigma \ ilde{\ell} \ { m mass} \ ilde{\chi}_1^0 \ { m mass}$	fb GeV GeV	0.72 1010.8 340.3	2.8% 0.6% 1.9%
3.0	Sleptons production	$\widetilde{e}_R^+\widetilde{e}_R^- ightarrow e^+e^-\widetilde{\chi}_1^0\widetilde{\chi}_1^0$	II	$egin{array}{c} \pmb{\sigma} \ & ilde{\ell} \mbox{ mass} \ & ilde{\chi}_1^0 \mbox{ mass} \end{array}$	fb GeV GeV	6.05 1010.8 340.3	0.8% 0.3% 1.0%
		$\widetilde{e}_{L}^{+}\widetilde{e}_{L}^{-} ightarrow \widetilde{\chi}_{1}^{0}\widetilde{\chi}_{1}^{0}e^{+}e^{-}hh \ \widetilde{e}_{L}^{+}\widetilde{e}_{L}^{-} ightarrow \widetilde{\chi}_{1}^{0}\widetilde{\chi}_{1}^{0}e^{+}e^{-}Z^{0}Z^{0}$		σ	fb	3.07	7.2%
		$\widetilde{v}_e\widetilde{v}_e ightarrow\widetilde{\chi}_1^0\widetilde{\chi}_1^0e^+e^-W^+W^-$		$\sigma \ ilde{\ell} ext{ mass } \ ilde{\chi}_1^{\pm} ext{ mass }$	fb GeV GeV	13.74 1097.2 643.2	2.4% 0.4% 0.6%
3.0	Chargino production	$\widetilde{\chi}_1^+ \widetilde{\chi}_1^- o \widetilde{\chi}_1^0 \widetilde{\chi}_1^0 W^+ W^-$	- II	$\widetilde{\chi}_1^\pm$ mass σ	GeV fb	643.2 10.6	1.1% 2.4%
5.0	Neutralino production	$\widetilde{\chi}^0_2\widetilde{\chi}^0_2 o h/Z^0h/Z^0\widetilde{\chi}^0_1\widetilde{\chi}^0_1$	11	$\widetilde{\chi}_2^0$ mass σ	GeV fb	643.1 3.3	1.5% 3.2%
3.0	Production of right-handed squarks	$\widetilde{q}_R\widetilde{q}_R o q ar{q} \widetilde{\chi}_1^0 \widetilde{\chi}_1^0$	Ι	Mass σ	GeV fb	1123.7 1.47	0.52% 4.6%
3.0	Heavy Higgs	$H^0\!A^0 ightarrow bar{b}bar{b}$	I	Mass Width	GeV GeV	902.4	0.3% 31%
5.0	production	$H^+H^- ightarrow tar{b}bar{t}$	•	Mass Width	GeV GeV	906.3	0.3% 27%

 $L = 2 ab^{-1}$

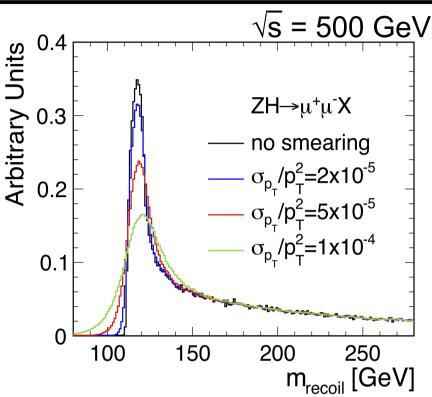
17/05/2013

Philipp Roloff ILC & more miniworkshop

Physics aims \rightarrow detector needs

(e.g. Higgs recoil mass, $H \rightarrow \mu^{+}\mu^{-}$, leptons from BSM processes)

$$\frac{\sigma(p_T)}{p_T^2} \sim 2 \times 10^{-5} \, GeV^{-1}$$


• Jet energy resolution (e.g. W/Z/h separation)

$$\frac{\sigma(E)}{E} \sim 3.5 - 5\%$$
 for $E = 1000 - 50 \, GeV$

• Impact parameter resolution (b/c tagging, e.g. Higgs couplings)

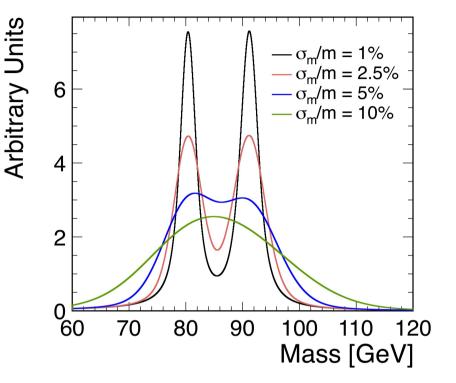
$$\sigma(d_0) = \sqrt{a^2 + b^2 \cdot GeV^2 / (p^2 \sin^3 \theta)}, a \approx 5 \, \mu \, m, b \approx 15 \, \mu \, m$$

Lepton identification, very forward electron tagging

Momentum resolution

(e.g. Higgs recoil mass, $h \rightarrow \mu^+ \mu^-$, leptons from BSM processes)

$$\frac{\sigma(p_T)}{p_T^2} \sim 2 \times 10^{-5} \, GeV^{-1}$$


• Jet energy resolution (e.g. W/Z/h separation)

$$\frac{\sigma(E)}{E} \sim 3.5 - 5\%$$
 for $E = 1000 - 50 \, GeV$

• Impact parameter resolution (b/c tagging, e.g. Higgs couplings)

$$\sigma(d_0) = \sqrt{a^2 + b^2 \cdot GeV^2 / (p^2 \sin^3 \theta)}, a \approx 5 \, \mu \, m, b \approx 15 \, \mu \, m$$

Lepton identification, very forward electron tagging

σ(d₀) [μm]

10

Momentum resolution

(e.g. Higgs recoil mass, $h \rightarrow \mu^{+}\mu^{-}$, leptons from BSM processes)

$$\frac{\sigma(p_T)}{p_T^2} \sim 2 \times 10^{-5} \, GeV^{-1}$$

• Jet energy resolution (e.g. W/Z/h separation)

$$\frac{\sigma(E)}{E} \sim 3.5 - 5\%$$
 for $E = 1000 - 50 \, GeV$

Impact parameter resolution

(b/c tagging, e.g. Higgs couplings)

$$\sigma(d_0) = \sqrt{a^2 + b^2 \cdot GeV^2/(p^2 \sin^3 \theta)}, a \approx 5 \, \mu \, m, b \approx 15 \, \mu \, m$$

Lepton identification, very forward electron tagging

θ [°]

CLIC ILD

full sim. p=1 GeV

fast sim. p=1 GeV full sim. p=10 GeV

····· fast sim. p=10 GeV △ full sim. p=100 GeV ······ fast sim. p=100 GeV

These requirements lead to the following challenges:

Vertex and tracker

- Very high granularity
- Dense integration of functionalities including ≈10 ns time-stamping
- Super light materials
- Low-power design & power pulsing
- Air cooling

ultra-light

Calorimetry

- Fine segmentation in R, Φ and Z
- Time resolution ≈1 ns
- Ultra-compact active layers
- Pushing integration to the limits
- Power pulsing

ultra-heavy and compact

Comparison CLIC and LHC detector

CLIC detector: High precision

- Jet energy resolution
- \rightarrow fine-grained calorimetry
- Momentum resolution
- Impact parameter resolution

Pileup of beam-induced backgrounds

- High background rates, medium energies
- High occupancies
- Can not use vertex separation
- Need very precise timing (1 ns, 10 ns)

"No" issue of radiation damage (10⁻⁴ LHC)

Except small forward calorimeters

Beam crossing "sporadic"

No trigger, read-out full 156 ns train

LHC detector: Medium-high precision

- Very precise ECAL (CMS)
- Very precise muon tracking (ATLAS)

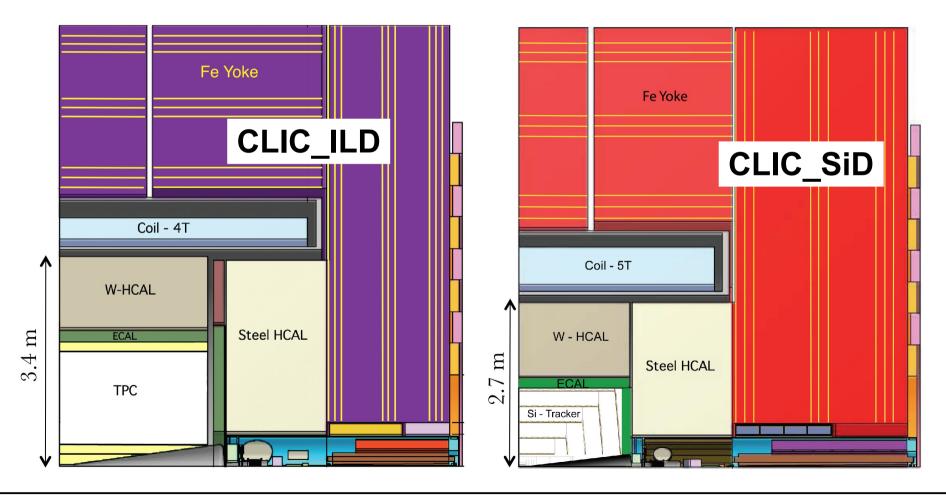
Pileup of minimum-bias events

- High background rates, high energies
- High occupancies
- Can use separation in Z
- Need precise time-stamping (25 ns)

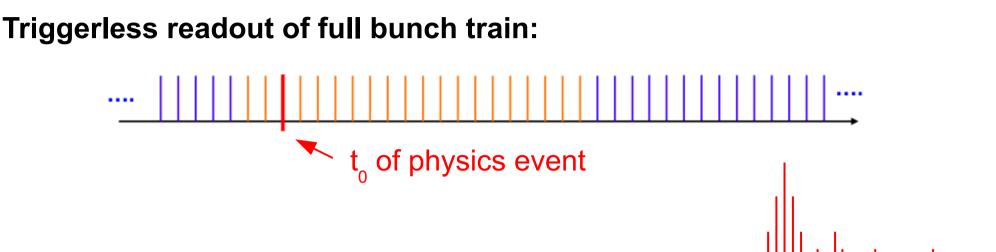
Severe challenge of radiation damage

Continuous beam crossings

Trigger needed for huge data reduction



CLIC detector concepts



Based on validated ILC designs, adapted and optimised to the CLIC conditions:

- Denser HCAL in the barrel (Tungsten, 7.5 λ)
- Redesign of the vertex and forward detectors (backgrounds)
- Precise timing capabilities of most subdetectors

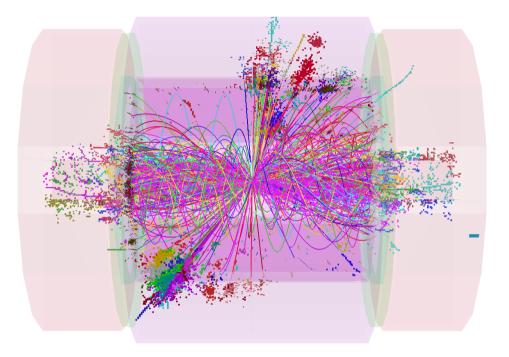
1.) Identify t₀ of physics event in offline event filter

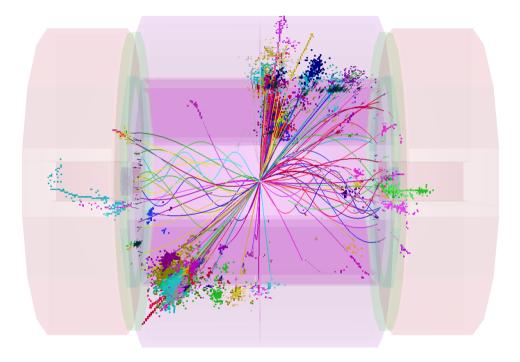
- Define reconstruction window around t_a
- All hits and tracks in this window are passed to the reconstruction \rightarrow Physics objects with precise p_r and cluster time information

2.) Apply cluster-based timing cuts

- Cuts depend on particle-type, p_{τ} and detector region
- \rightarrow Protects physics objects at high p₁

tCluster

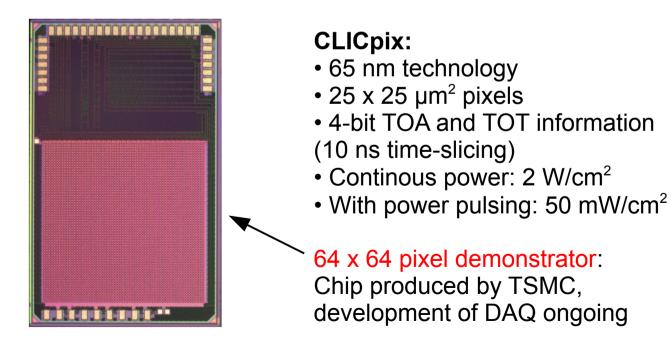

Used in the reconstruction software for CDR simulations:


Subdetector	Reconstruction window	hit resolution		
ECAL	10 ns	1 ns		
HCAL Endcaps	10 ns	1 ns		
HCAL Barrel	100 ns	🖊 1 ns		
Silicon Detectors	10 ns	$10/\sqrt{12}$ ns		
TPC	entire bunch train	n/a		
	 • CLIC hardware requirements • Achievable in the calorimeters with a sampling every ≈ 25 ns 			

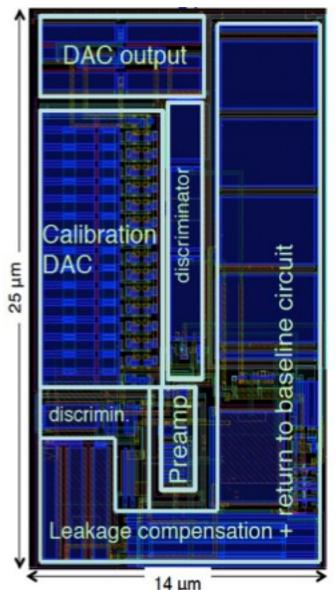
$e^+e^- \rightarrow H^+H^- \rightarrow t\overline{b}b\overline{t}$ (8 jet final state)

1.2 TeV background in the reconstruction window

100 GeV background after (tight) timing cuts

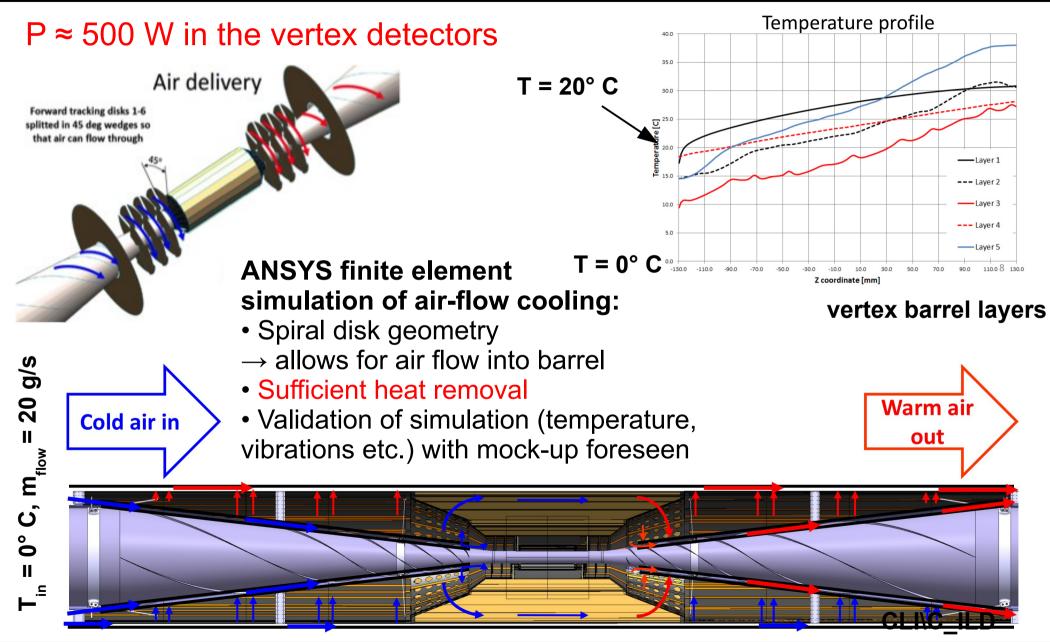

CLIC pixel sensor R&D

AIDA

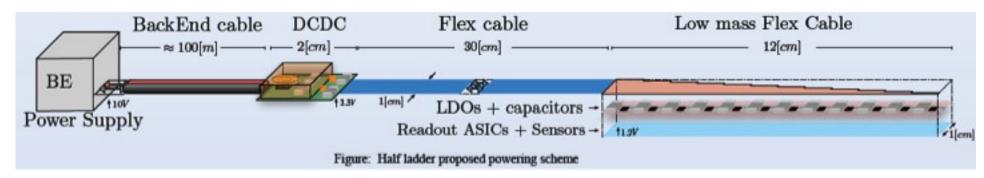


Hybrid approach:

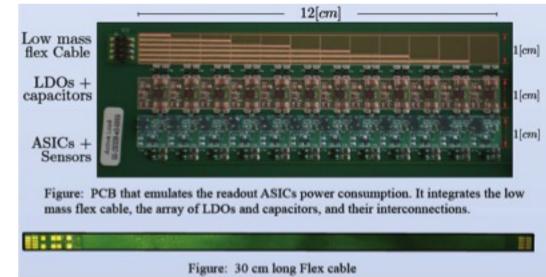
- Thin (≈ 50 µm) sensors (e.g. Micron, CNM)
- Thinned high density ASIC in very-deep-sub-micron:
 - R&D steps: TimePix3, Smallpix
 - CLICPix
- Low-mass interconnect:
 - Micro-bump-bonding
 - Through-Silicon-Vias (R&D with CEA-Leti)
 - Chip-stitching
- Power pulsing and air cooling foreseen


Analog part of a CLICpix pixel

Low-mass cooling

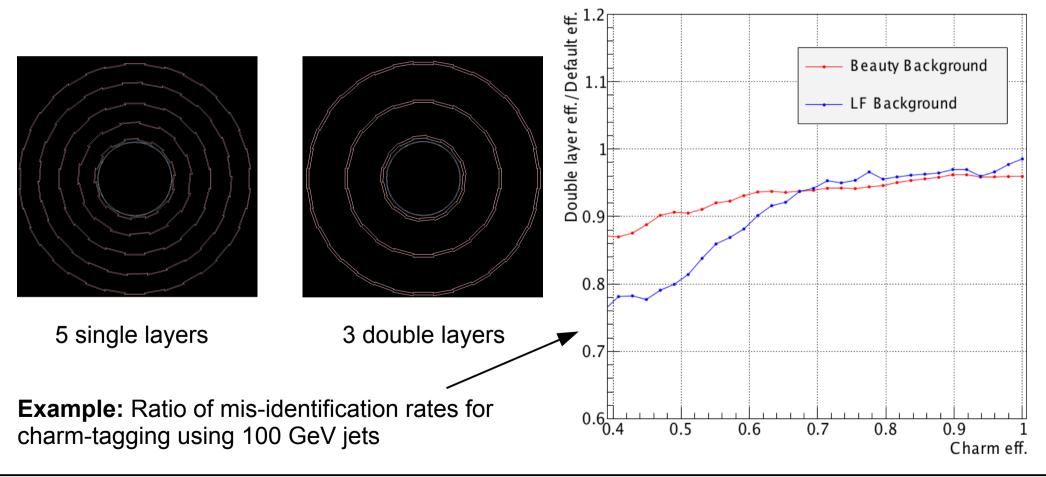


CERNY


Power pulsing and delivery

- CLICPix: ≈2 A at 1.2 V for 15 µs
- DC-DC converter (outside the vertex detector region)
- Flex cable
- LDOs + capacitors
- 0.07% X₀ with technology available today (Si capacitors)

Philipp Roloff ILC & more miniworkshop



Vertex detector geometry

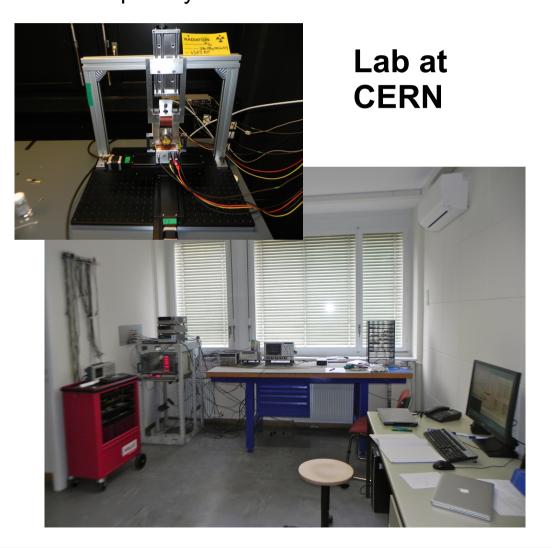
Recently started to investigate the impact of the vertex detector geometry on the flavour tagging performance:

- Impact of material budget on flavour tagging performance
- Test impact of spiral geometry on physics performance
- Comparison of single layer and double layer geometry

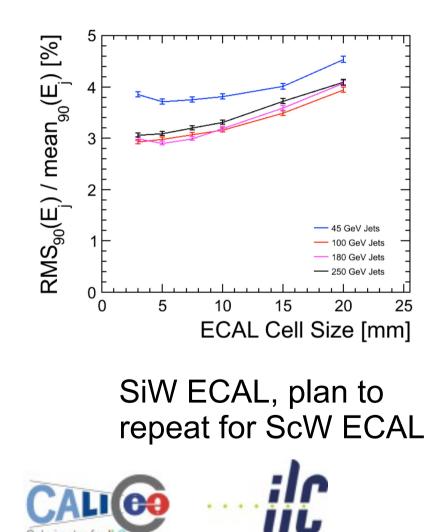
Silicon surface in ECAL: • 2600 m² in CLIC_ILD • 1100 m² in CLIC_SiD For comparison: CMS tracker has 200 m² silicon surface

 \rightarrow Mayor cost driver for the detectors

New effort: Rethink ECAL design for cost optimisation Use or combine scintillator instead of silicon readout system?


Simulation studies: Comparison of cell sizes, transverse segmentation, ...

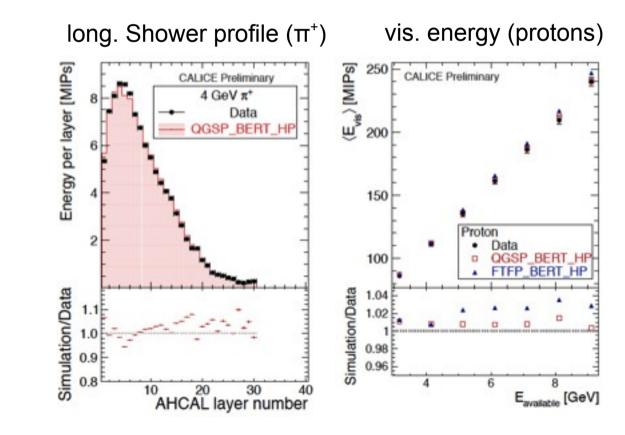
Hardware: Which minimal size the tiles is possible?


Common ILC-CLIC CALICE working group: http://indico.cern.ch/categoryDisplay.py?categId=4379

Measurements in dark room: source with momentum selection capability

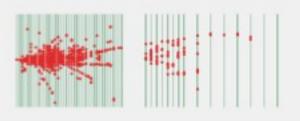
Simulation studies

Analog HCAL: scintillator/tungsten

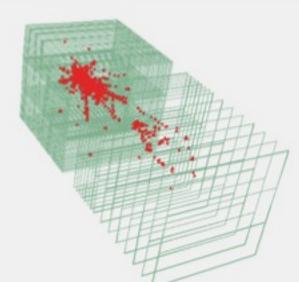

AIDA

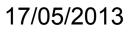
 \rightarrow good agreement with Geant4

- HCAL tests with 10 mm tungsten absorber plates
- Tests in 2010 (PS) and 2011 (SPS) with scintillator active layers, 3 x 3 cm² cells, analog readout

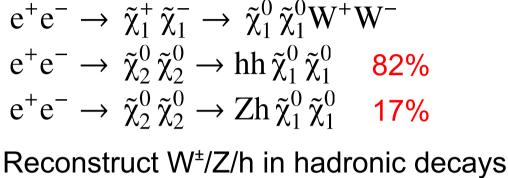


Digital HCAL: scintillator/RPC

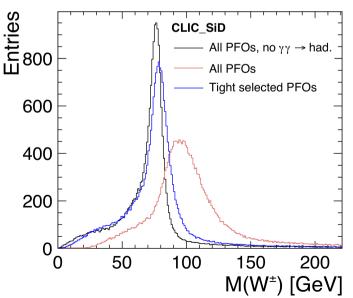


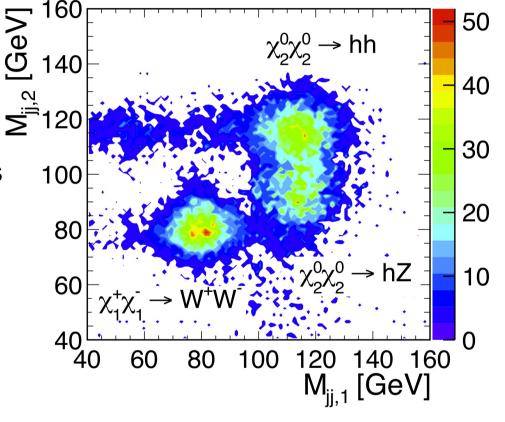


- 54 glass RPC chambers, 1 m² each
- Pad size 1 x 1 cm²
- Digital readout (1 threshold),
- 100 ns time slicing
- Main DHCAL stack (39) and tail catcher (15)
- 500000 readout channels
- Tests in 2012 at CERN PS and SPS with tungsten absorber



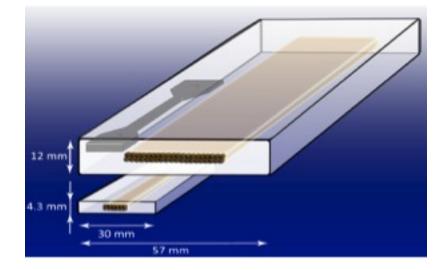
600 40 400

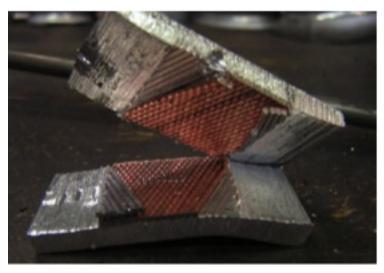

Precision on the measured gaugino masses (few hundred GeV): 1 - 1.5%



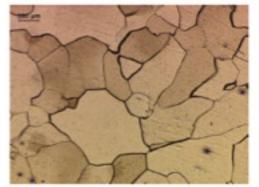
Chargino and neutralino pair production:

 \rightarrow four jets and missing energy

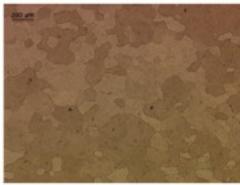




Solenoid coil



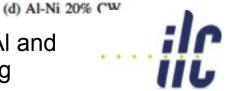
Conductor size compared to ATLAS



Shear test

Extrusion of AI-Ni stabilised conductor

(a) Al 0% CW



(b) Al-Ni 0% CW

(c) Al 20% CW

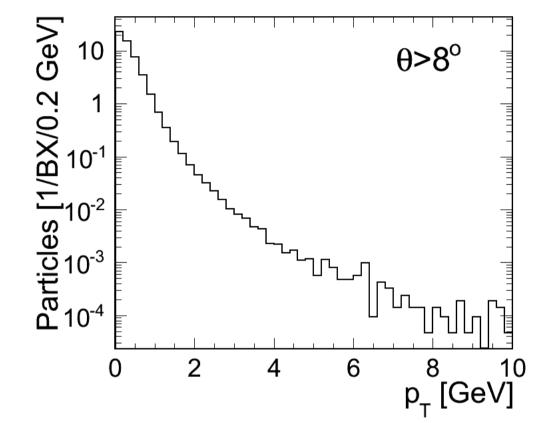
Change in material properties of AI and AI-Ni before and after cold-working

Material property tends to behave as expected

17/05/2013

Philipp Roloff ILC & more miniworkshop

- Physics at an CLIC e^+e^- from 350 GeV to 3 TeV can be measured with high precision, despite challenging background conditions
- Backgrounds studied in detail:
 - Require high granularity in space and time
 - Define detector requirements and guide future R&D
- The performance of the CLIC detector concepts was demonstrated using detector benchmark reactions
- Ongoing project phase (2012-2016):
 - CLIC detector R&D (within the international LC R&D program)
 - Further physics studies (LHC input) + detector optimisation

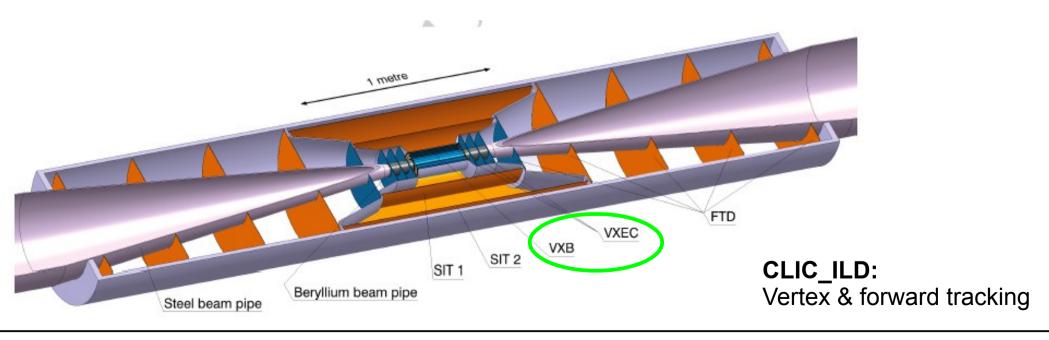

Backup slides

General readout considerations

3.2 $\gamma\gamma \rightarrow hadr.$ interactions per bunch crossing:

- 19 TeV in the calorimeters per 156 ns bunch train
- 5000 tracks with a total momentum of 7.3 TeV

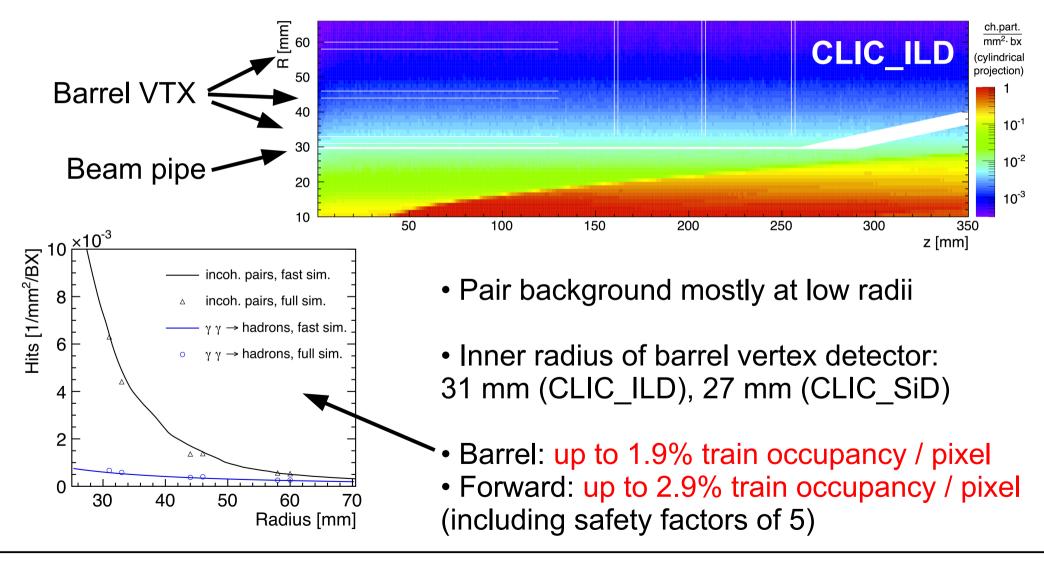
Triggerless readout of full bunch train:


- Time-stamping in tracking detectors and calorimeters
- Multi-hit storage / readout
- Filtering algorithms at reconstruction level (\rightarrow later)

Vertex detector requirements

Requirements:

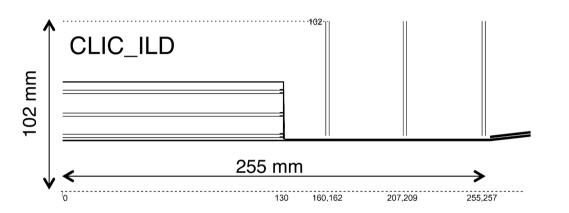
- 25 x 25 µm² pixel size
- Material: 0.2% X₀ per layer (sensor & support):
 - Very thin materials / sensors
 - Low-power design, power pulsing, low-mass cooling
- Time stamping precision: ≈10 ns (to reject backgrounds)
- Radiation level: ≈10¹⁰ n_{eq} /cm² /yr (10⁻⁴ of LHC)

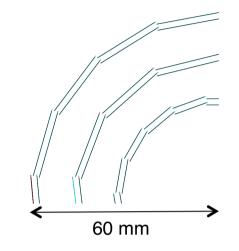

17/05/2013

Vertex detector backgrounds

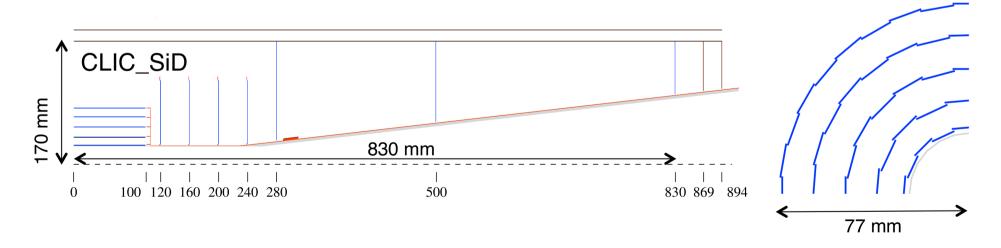
Incoherent pair background determines:

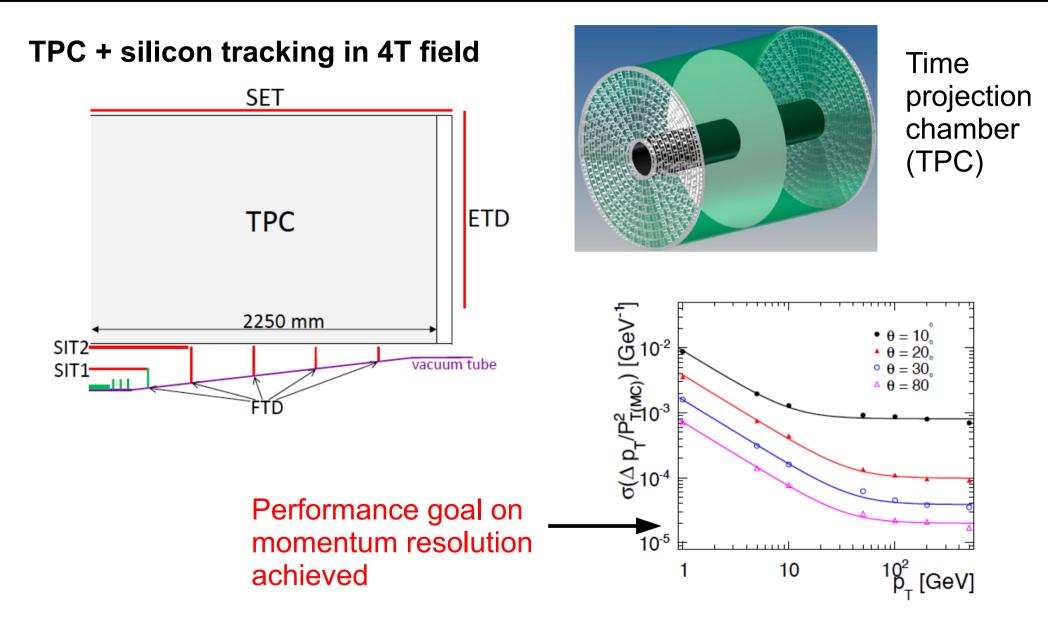
Locations of vertex detector & forward tracking disks, design of beam pipe



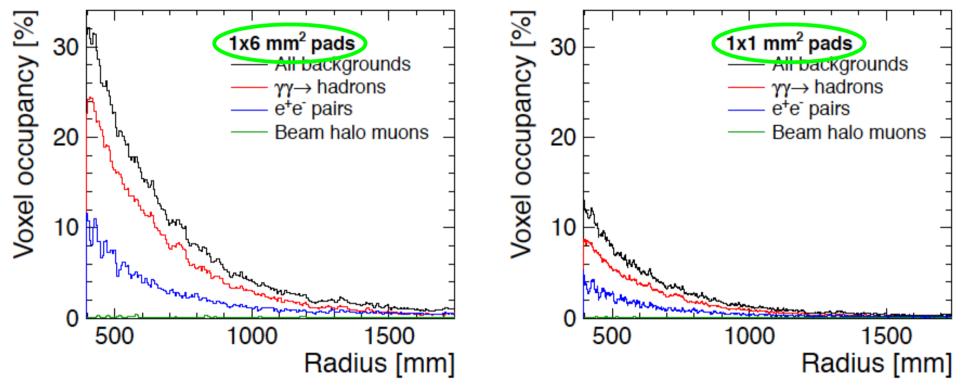


Vertex detector layouts





CLIC_SiD: 5 single layers, $2.76 \cdot 10^9$ pixels



Occupancies in the TPC

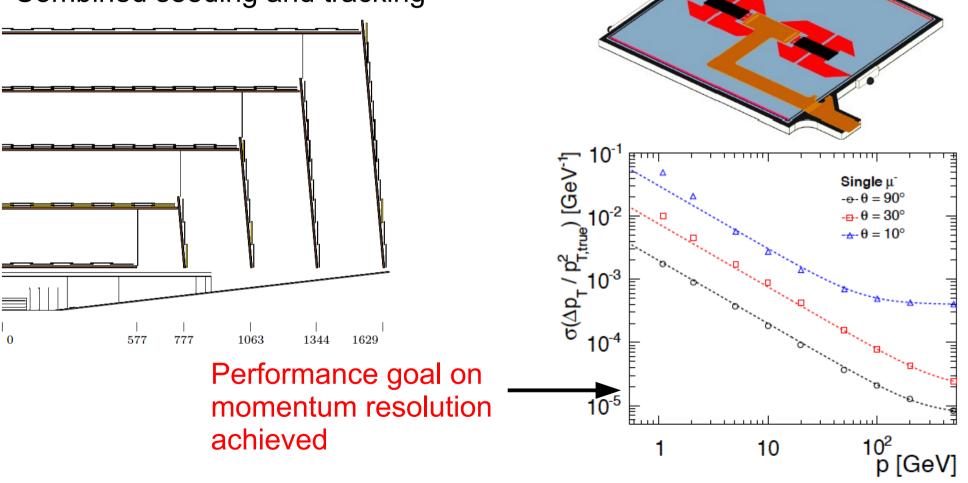
The readout time of the TPC is much longer than a CLIC bunch train \rightarrow The TPC integrates the background of a full train at CLIC

Plots are for Gas Electron Multiplier (GEM) + Pad readout, voxels of 25 ns

 \rightarrow A TPC at CLIC may need a larger inner radius or very small pads Similar study with micromegas + pixel readout is starting

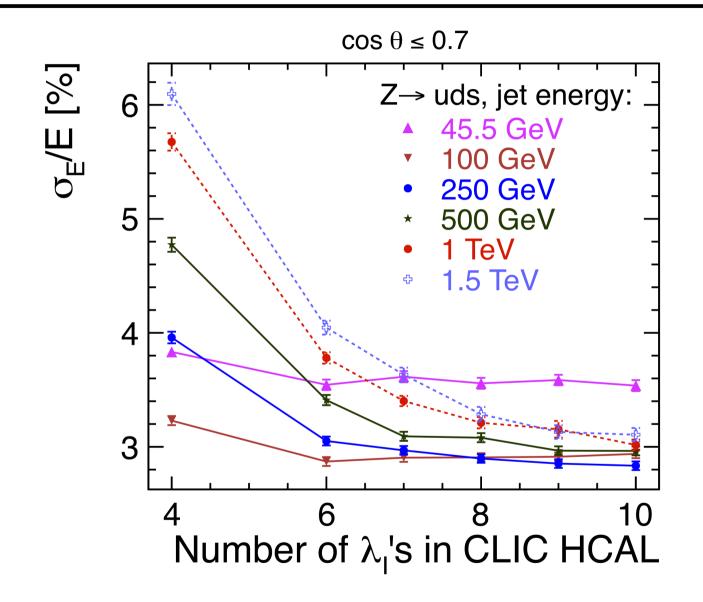
17/05/2013

Tracking in CLIC_SiD



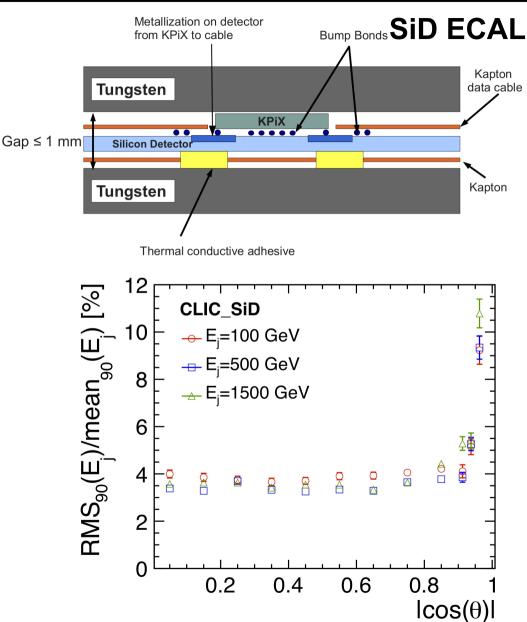
Two readout (KPiX) chips bump

bonded to the sensor


- Vertex detector and tracker viewed as one system
- Combined seeding and tracking

HCAL resolution

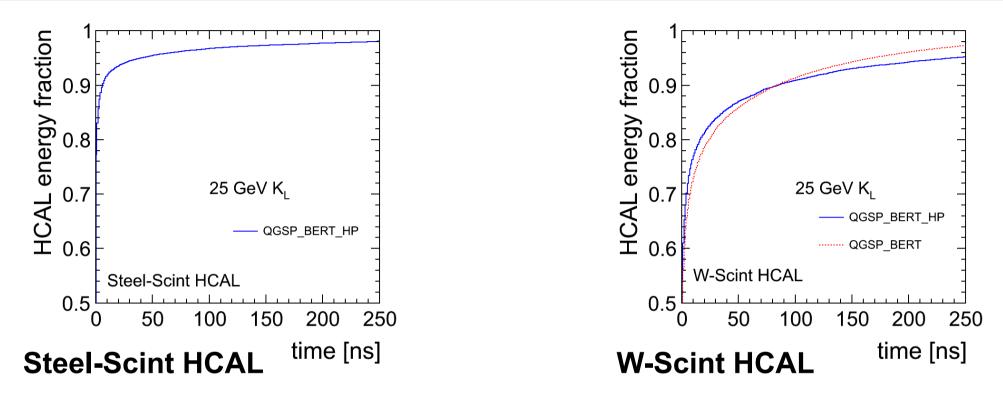
Calorimetry: technology



ECAL:

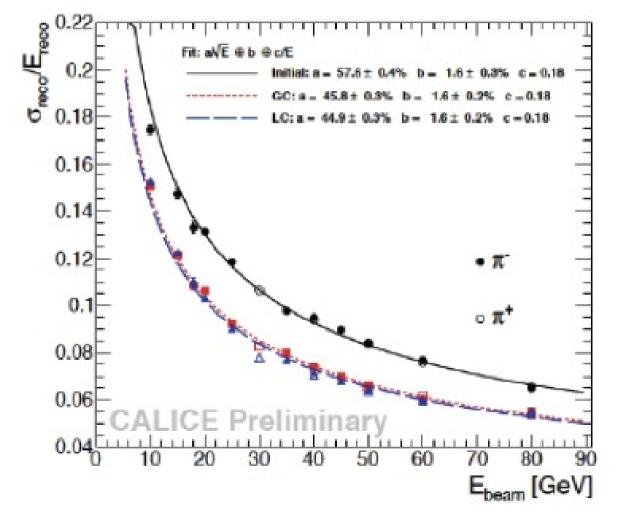
- Silicon pads or scintillator
- Tungsten absorber
- Cell sizes: 25 mm² (CLIC_ILD) 13 mm² (CLIC_SiD)
- 30 layers in depth
- 23 X_0° and 1 λ

HCAL:


- Several options for sensors
- Tungsten (barrel), steel (forward)
- Cell sizes: 9 cm² (analog) 1 cm² (digital)
- 60 75 layers in depth
- 7.5 λ

Time development in hadronic showers

- In steel 90% of the energy is recorded within 6 ns (corrected for time-of-flight)
- In tungsten only 82% of the energy is deposited within 25 ns:
- (much larger component of the energy in nuclear fragments)
- \rightarrow Energy resolution degrades if not the majority of calorimeter hits is read


 \rightarrow Need to integrate over $\approx \! 100$ ns in the reconstruction, keeping the background level low

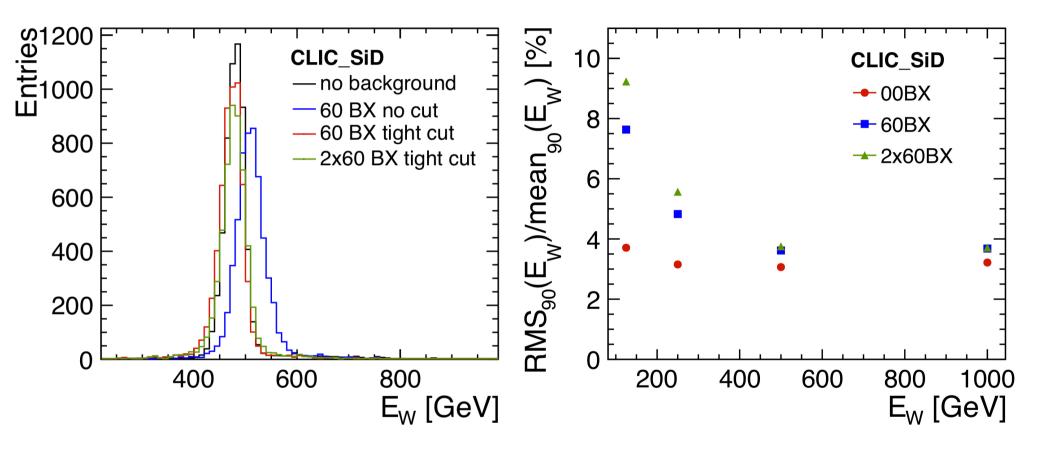
Software compensation

High granularity of the calorimeter can be used to distinguish between electromagnetic (dense) and hadronic (less dense) shower components

Improved resolution (20% better) and linearity

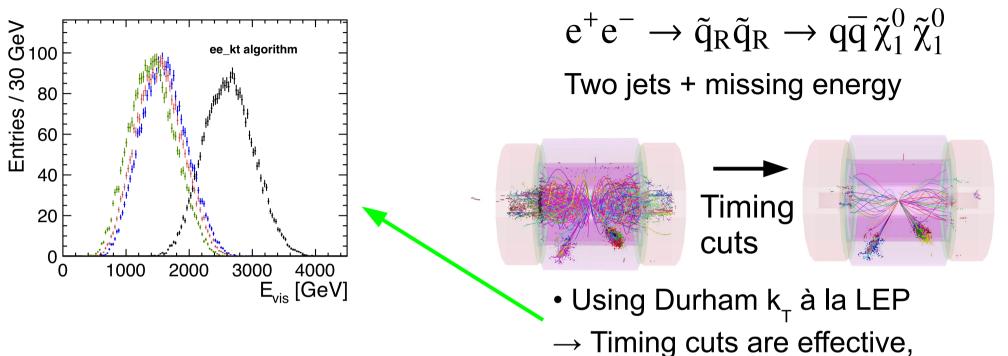
17/05/2013

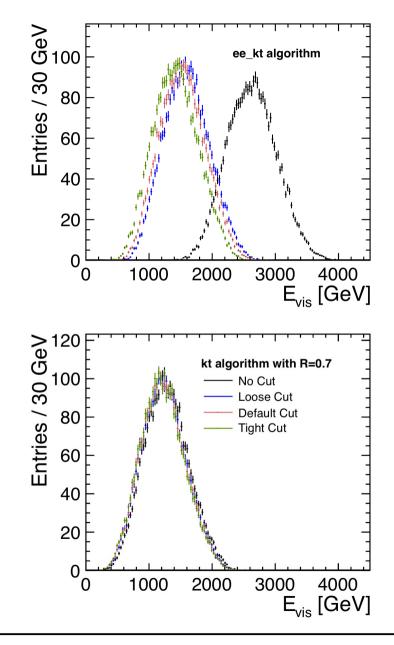
PFO based timing cuts



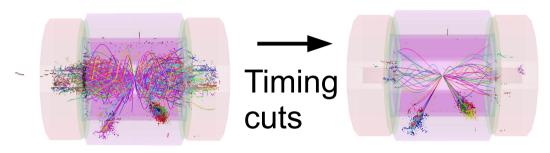
Region	<i>p_t range</i> Time cut		
Photons			
central	$0.75~{ m GeV} \le p_t < 4.0~{ m GeV}$	t < 2.0 nsec	
$(\cos\theta \le 0.975)$	$0~{ m GeV} \le p_t < 0.75~{ m GeV}$	t < 1.0 nsec	
forward	$0.75~{ m GeV} \le p_t < 4.0~{ m GeV}$	t < 2.0 nsec	
$(\cos \theta > 0.975)$	$0~{ m GeV} \le p_t < 0.75~{ m GeV}$	t < 1.0 nsec	
Neutral hadrons			
central	$0.75~{ m GeV} \le p_t < 8.0~{ m GeV}$	t < 2.5 nsec	
$(\cos\theta \le 0.975)$	$0~{ m GeV} \le p_t < 0.75~{ m GeV}$	t < 1.5 nsec	
forward	$0.75~{ m GeV} \le p_t < 8.0~{ m GeV}$	t < 2.0 nsec	
$(\cos\theta > 0.975)$	$0~{ m GeV} \le p_t < 0.75~{ m GeV}$	t < 1.0 nsec	
Charged PFOs			
all	$0.75~{ m GeV} \le p_t < 4.0~{ m GeV}$	t < 3.0 nsec	
	$0~{ m GeV} \le p_t < 0.75~{ m GeV}$	t < 1.5 nsec	

- Track-only minimum p_t: 0.5 GeV
- Track-only maximum time at ECAL: 10 nsec




Jet reconstruction at CLIC I

but not sufficient



Jet reconstruction at CLIC II

 $e^+e^- \to \tilde{q}_R \tilde{q}_R \to q \overline{q} \, \tilde{\chi}^0_1 \, \tilde{\chi}^0_1$

Two jets + missing energy

- Using Durham k_⊤ à la LEP
 → Timing cuts are effective, but not sufficient
- "hadron collider" k_{T} , R = 0.7
- → Background significantly reduced further

 \rightarrow Need timing cut + jet finding for background reduction

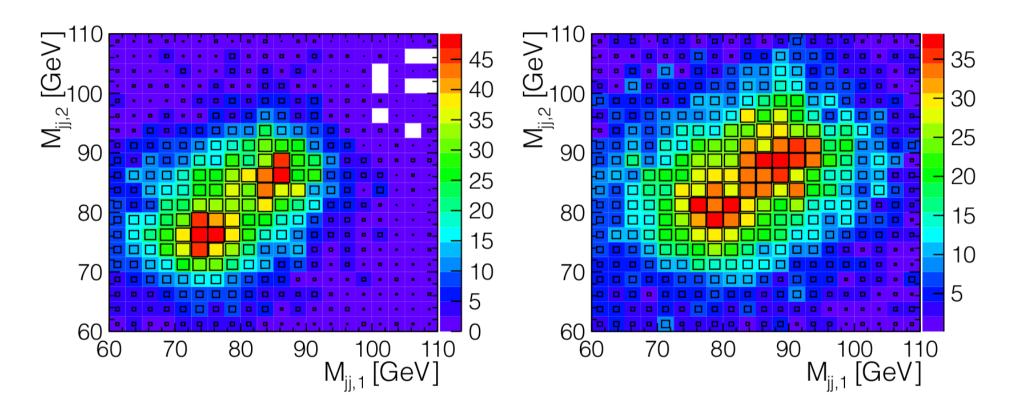
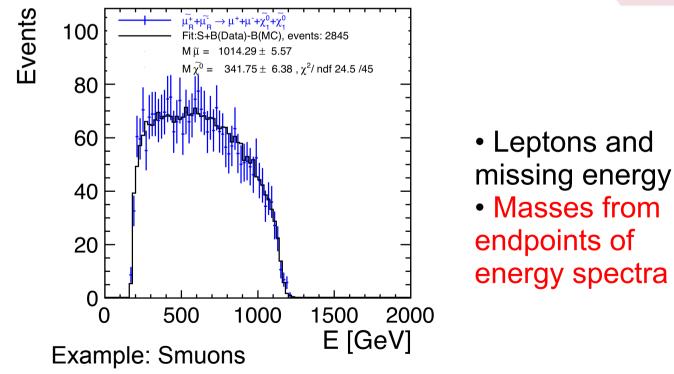
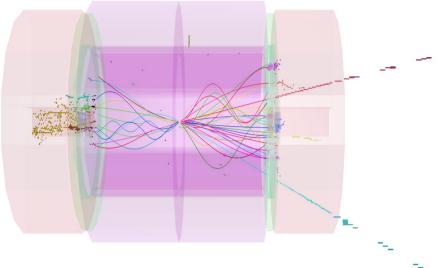


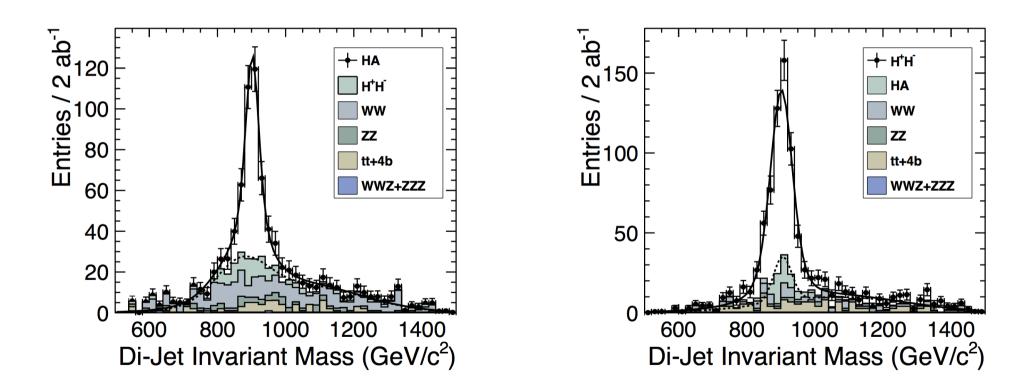
Figure 19: Separation of *W* and *Z* from the chargino decay without overlay (left) and with 60 BX of background (right) for CLIC_SiD.




Test of the lepton reconstruction

- Slepton production very clean at CLIC
- SUSY "model II": slepton masses ≈ 1 TeV
- Investigated channels include:

$$\begin{split} e^+e^- &\rightarrow \tilde{\mu}_R^+\tilde{\mu}_R^- \rightarrow \mu^+\mu^- \tilde{\chi}_1^0 \tilde{\chi}_1^0 \\ e^+e^- &\rightarrow \tilde{e}_R^+\tilde{e}_R^- \rightarrow e^+e^- \tilde{\chi}_1^0 \tilde{\chi}_1^0 \\ e^+e^- &\rightarrow \tilde{\nu}_e \tilde{\nu}_e \rightarrow e^+e^- W^+ W^- \tilde{\chi}_1^0 \tilde{\chi}_1^0 \end{split}$$


$m(\tilde{\mu}_{\rm R})$	•	$\pm 5.6 \text{GeV}$
$m(\tilde{e}_{R})$	•	$\pm 2.8 \text{GeV}$
$m(\tilde{v}_e)$	•	$\pm 3.9 \text{GeV}$
$m(\tilde{\chi}_1^0)$	•	$\pm 3.0 \text{GeV}$
$m(\tilde{\chi}_1^{\pm})$	•	$\pm 3.7 \text{GeV}$

Flavour tagging crucial!

Heavy Higgs bosons: $e^+e^- \rightarrow HA \rightarrow b\overline{b}b\overline{b}$ $e^+e^- \rightarrow H^+H^- \rightarrow t\overline{b}b\overline{t}$

Accuracy of the heavy Higgs mass measurements: ≈ 0.3%