Esperimento CHIPSODIA stato dell'arte a marzo 2013

Durata 2010 sj 2011-2012 2013 WP6 di DIAPIX

Gruppi di Ricerca Sezioni INFN di Firenze, Perugia, Bari LENS, Istituto Nazionale di Ottica di Firenze Istituto Italiano di Tecnologia di Genova

CHIPSODIA finalità

CHIPSODIA attività

Silicon-on-diamond-bonding (SOD)- Firenze Grafitizzazioni di superficie e 3dim - Firenze Realizzazione di Through Silicon Vias - IIT Realizzazione di bio-dispositivi - IIT Simulazioni, metallizzazioni - INFN Pg Progettazione/realizzazione chip elettronica -**INFN** Bari

Silicon-on-diamond-bonding (SOD)

Silicon On Diamond Fabrication: Cleaning and mounting

Si & D plates are cleaned in a white chamber in ultrasonic bath assembled in a laminar flow hood Attualmente Camera pulita INO Sperabilmente INFN

Diamond 5 ×5 mm² plate over silicon seen through the fused silica viewport

Silicon On Diamond Fabrication: Laser bonding

Uniaxial stress: 800 atm needed* for 90 % adhesion with the present $R_a \sim 5$ nm

*Stefano Lagomarsino Ph,D Thesis http://hep.fi.infn.it/sciortino/ Research/dissertation_Lagom arsino.pdf

The diamond silicon interface is irradiated by UV laser pulses λ =355 nm τ =20 ps Energy density = 2-0.5 J/cm²

Laser: LENS Laboratorio Prof Roberto Bini

RAPS on DIAMOND: succesfully tested by INFN Perugia GOAL:

To test the functionality of a real chip After \Rightarrow thinning (down to 40 µm) and \Rightarrow bonding to diamond

CMOS Active Pixel Sensors 256 × 256 matrix

RAPS bonded on diamond (SOD_34) successfully tested

MIPs at grazing incidence

Grafitizzazioni di superficie e 3dim - Firenze

Surface contacts $\rho \approx 4 \text{ m}\Omega \text{ cm}$, about the value of graphite

5 mm

ns laser (ablation with fs laser)

Diamond detector with graphite contacts

C = 2.4 pF $R \sim 10^{15} \Omega$

Comparison between graphite and standard (Ti-Au) contacts Three samples of the same quality and geometrical thickness

Agreement in the mesaurements according to the lower sensitive volume thickness of the graphite detector

Struttura attualmente sotto test

Grafitizzazioni di volume senza danneggiamenti in regime di femtosecondo

ns columns ρ =60 mΩ cm After annealing in Ar at 1050 K $15 < \rho < 100 \text{ m}\Omega \text{ cm}$

Compressive stress maps

3D detector primo tentativo

A proof-of-concept prototype was fabricated arranging 61 (36+25) staggered wires in a 1×1mm², 0.5 mm-thick polycrystalline detector-grade diamond, and contacting them with two inter-digitated graphitic combs.

A proof-of-concept prototype was fabricated arranging 61 (36+25) staggered wires in a 1x1mm², 0.5 mm-thick polycrystalline detector-grade diamond, and contacting them with two inter-digitated graphitic combs.

Buried channels are 500 μm long, they seem shorter due to the high refractive index of diamond.

SOD PROTOTIPI DA REALIZZARE NEL 2013

PROTOTIPO 1 CHIPSODIA chip (G. De Robertis, F. Loddo e A. Ranieri - BA)

2 extra channels 25 chip attualmente sotto test Maps on diamond: una scorciatoia

I Monolithic Active Pixel Sensors (MAPS) lavorano sulle poche cariche (\approx 1000 el.) integrate nella depletion well del diodo e generate anche al di fuori entro un MFP (< 20 µm).

I Monolithic Active Pixel Sensors (MAPS) lavorano sulle poche cariche (\approx 1000 el.) integrate nella depletion well del diodo e generate anche al di fuori entro un MFP (< 20 µm).

Le cariche vengono raccolte attraverso l'interfaccia sidiamante

Charge is collected through the bonding Si-diamond interface