

### **Timing with Diamond Detector**

<u>N. Randazzo<sup>1</sup></u>, S. Aiello<sup>1</sup>, G. Chiodini<sup>2</sup>, G.A.P. Cirrone<sup>3</sup>, G. Cuttone<sup>3</sup>, M. De Napoli<sup>1</sup>, V. Giordano<sup>3</sup>, S. Kwan<sup>8</sup>, E. Leonora<sup>1</sup>, F. Longhitano<sup>1</sup>, D. Lo Presti<sup>1,5</sup>, L. Moroni<sup>4</sup>, C. Pugliatti<sup>1,5</sup>, R. Rivera<sup>8</sup>, V. Scuderi<sup>3</sup>, V. Sipala<sup>6,7</sup>, C. Stancampiano<sup>1</sup>, C. Tuvè<sup>1,5</sup>, L. Uplegger<sup>8</sup>

<sup>1</sup> INFN of Catania, Italy
 <sup>2</sup> INFN of Lecce, Italy
 <sup>3</sup> INFN Laboratori Nazionali del SUD, Italy
 <sup>4</sup> INFN of Milano-Bicocca, Italy
 <sup>5</sup> Department of Physics, University of Catania Italy.
 <sup>6</sup> INFN of Cagliari, Italy
 <sup>7</sup> University of Sassari, Italy
 <sup>8</sup> FNAL - Batavia (USA)

Dec, 6 2012

giovedì 6 dicembre 12



## OUTLINE

#### ♦ MEASUREMENTS

#### Motivations

#### Setting up

#### Results

#### **CONCLUSION AND NEXT STEPS**

Dec, 6 2012

giovedì 6 dicembre 12

## WP5: Fast timing with diamond Detectors



Diamond pros: Fast rise time (<< 140 ps) Reduced ballistic effect Low Capacitance Rad-hard

Diamond cons: Small signal

The "jitter"  $\sigma_t$  of the timing distribution

$$\sigma_t = \frac{\sigma_n}{(dS/dt)_{S_T}} \approx \frac{t_r}{S/N}$$

Time walk: corrected by constant fraction techniques or offline by amplitude Time jitter: reduced by lower noise, faster signal and higher gain



### Our target

Create a reference setup (detector and electronics) in order to compare different material and read out solutions developed by the collaboration.

#### **Reference Detector**

Single crystal hyper-pure CVD supplied by DDL LTD Size 4,5x4.5 mm2 and 500 um thickness

#### **Reference Electronics**

100 MHz bandwidth Charge Sensitive Amplifier2 GHz wide band voltage amplifierboth amplifier supplied by Cividec.

## Experimental setup @ LNS 62 MeV Proton Beam





Detector 1 & 2 = Single crystal from DDL AMPLI 1 & 2 = CSA 100 MHz & 2 GHz Braodband voltage amplifier from CIVIDEC

Dec, 6 2012

giovedì 6 dicembre 12

CSN5 Meeting



giovedì 6 dicembre 12



## **Several methods of offline analysis**

#### Leading edge - simple interpolation



#### Leading edge - polynomial fit





#### Normalized threshold polynomial fit - (Walk compensation)



**CSN5** Meeting

8

È

## **Comparison of results with 62 MeV Proton beam**



| Analysis Method                                                     | resolution  | resolution              |
|---------------------------------------------------------------------|-------------|-------------------------|
|                                                                     | 100 MHz CSA | 2 GHz Voltage Amplifier |
|                                                                     | (sigma)     | (sigma)                 |
| Leading edge - simple interpolation                                 | 246 ps      | 70 ps                   |
| Leading edge - polynomial fit                                       | 241 ps      |                         |
| Normalized threshold simple<br>interpolation<br>(Walk compensation) | 95 ps       |                         |
| Normalized threshold polynomial fit (Walk compensation)             | 64 ps       |                         |
| Software Constant fraction discriminator                            | 84 ps       |                         |
| Real Constant Fraction Discriminator                                | 90 ps       | do not work             |

# Theoretical prediction with 62 MeV proton Beam and 100 MHz Charge Sensitive Preamplifier







$$\sigma_t = \frac{\sigma_n}{(dS/dt)_{S_T}} \approx \frac{t_r}{S/N}$$
66 ps

Dec, 6 2012

giovedì 6 dicembre 12

**CSN5** Meeting

## Experimental setup @ FNAL 120 GeV proton beam





Detector 1 & 2 = Single crystal from DDL Detector 3 & 4 = poly-crystal from DDL 300um thickness AMPLI 1 & 2 = CSA 100 MHz from CIVIDEC

Dec, 6 2012

giovedì 6 dicembre 12

CSN5 Meeting

### Signal with 120 GeV Pion Beam (MIP) and 100 MHz CSA



#### Analyzed with normalized threshold and polynomial fit

Dec, 6 2012

giovedì 6 dicembre 12

CSN5 Meeting









With two single crystal 337 ps Theoretical prediction 280 ps

Start with single crystal Stop with Poly-crystal 568 ps Theoretical prediction 480 ps

CSN5 Meeting

13

giovedì 6 dicembre 12

## Timing vs track angle at SPS (Oct 12)



Diamond strip detector from INFN-DIAPIX experiment.

- 10x10x0.5mm3 Polys-crystal
- 4 strips
- 1.5 mm pitch and 6.5 mm length (0.89pF)
- Only two strips instrumented

Commercial electronics from CIVIDEC

- Fast charge sensitive amplifier
- 100 MHZ BW, 2 ns rt, 7 ns pulse width
- Gain=8mV/fC, noise=450 e-



Sezione di Catania

| Track Angle  | Mean Amp<br>(mV) | Sigma(T1-T2)<br>(ps) |
|--------------|------------------|----------------------|
| 0            | 130              | 740                  |
| 25           | 127              | 769                  |
| 45           | 180              | 610                  |
| 65           | 195              | 428                  |
| 90 (nominal) | 233              | 400                  |

Electronics and packaging not optimized for best timing!!!

**TESTBEAM GOALS** 

- Study S/N ratio as a function of beam angle
- Verify relation time resolution = rise-time / S/N ratio

05/12/12

G. CHIODINI - Testbeam diamonds

Dec, 6 2012

giovedì 6 dicembre 12

CSN5 Meeting

1

## Timing vs track angle at SPS (Oct 12)





(9

Electronics and packaging not optimized for best timing!!!

Diamond strip detector from INFN-DIAPIX experiment.

- 10x10x0.5mm3 Polys-crystal
- 4 strips
- 1.5 mm pitch and 6.5 mm length (0.89pF)
- Only two strips instrumented

#### Commercial electronics from CIVIDEC

- Fast charge sensitive amplifier
- 100 MHZ BW, 2 ns rt, 7 ns pulse width
- Gain=8mV/fC, noise=450 e-

#### **TESTBEAM GOALS**

- Study S/N ratio as a function of beam angle
- Verify relation time resolution = rise-time / S/N ratio

(1.50)

(10)





## Results

| Track Angle  | Mean Amp<br>(mV) | Sigma(T1-T2)<br>(ps) |
|--------------|------------------|----------------------|
| 0            | 130              | 740                  |
| 25           | 127              | 769                  |
| 45           | 180              | 610                  |
| 65           | 195              | 428                  |
| 90 (nominal) | 233              | 400                  |



Dec, 6 2012

giovedì 6 dicembre 12



## A fast and low noise charge sensitive preamplifier in 90 nm CMOS technology

## A. Baschirotto,<sup>*a,b*</sup> G. Cocciolo,<sup>*c*</sup> M. De Matteis,<sup>*c*</sup> A. Giachero,<sup>*a,b*</sup> C. Gotti,<sup>*b,d*,1</sup> M. Maino<sup>*a,b*</sup> and G. Pessina<sup>*a,b*</sup>

<sup>a</sup>Dipartimento di Fisica, Università degli Studi di Milano Bicocca, Piazza della Scienza 3, I-20126, Milano, Italy
<sup>b</sup>INFN — Sezione di Milano Bicocca, Piazza della Scienza 3, I-20126, Milano, Italy
<sup>c</sup>Dipartimento di Ingegneria dell'Innovazione, Università del Salento, Via Per Monteroni, I-73100, Lecce, Italy
<sup>d</sup>Dipartimento di Elettronica e Telecomunicazioni, Università degli Studi di Firenze, Via S. Marta 3, I-50139, Firenze, Italy

giovedì 6 dicembre 12





- ENC (equivalent noise charge) of about 350 electrons RMS with a detector capacitance of 1 pF.
- Power consumption is 5 mW for one channel,
- Bandwith is about 180 MHz
- Rise Time 2 ns
- better then CIVIDEC CSA in timing performances by factor 2-3

giovedì 6 dicembre 12

18

Sezione di Catania



A reference measuring system was setting up

Theoretical prediction are in agree with test result

Next step

Dedicated front-end electronics "closed" to detector

Boosting signal with different detector configuration (i.e staked detectors)

giovedì 6 dicembre 12