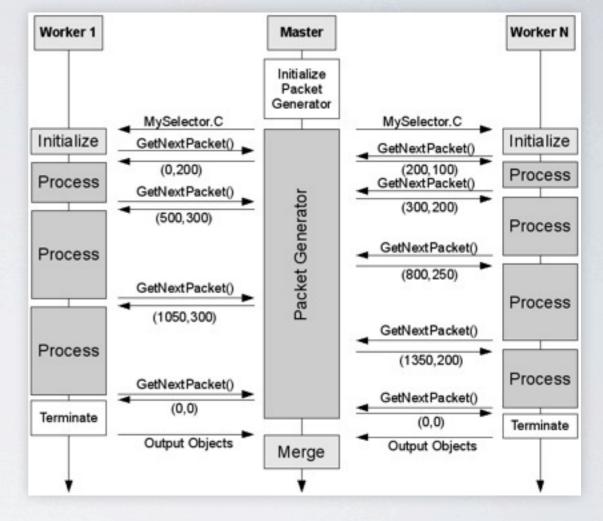
PROOF on the Cloud using CernVM and PROOF on Demand

Dario Berzano CERN PH-SFT

Workshop Commissione Calcolo e Reti INFN - Genova, 31 mag 2013


Introduction

Interactive analysis with PROOF

- Event-based parallelism
 - Process single events in parallel
 - Merge results eventually
- Interactive
 - All workers active at the same time
 - Workload assignment is dynamic

 Uneven work distribution leads to uniform completion time

http://root.cern.ch/drupal/content/proof

Dario Berzano

Rationale: PROOF as a Service Historical notable PROOF deployments


Dedicated clusters e.g. ALICE: standalone PROOF PROOF on Demand e.g. ATLAS: workers submission

- Currently: diverse PROOF deployments
 → issues are diverse as well: difficult to cope with everything
- Cloud computing: system administrator ≠ service administrator
 → "PROOF as a Service": boot a cluster of VMs to provide it
- Elasticity
 - \rightarrow PROOF "size" (num. of VMs) can be adapted on demand

Goal: to provide a zero-conf "PROOF as a Service" cluster a well-known reference deployment with no client requirements

The bricks that make the house

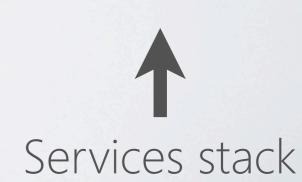
The Virtual Analysis Facility

- A cluster of original unmodified CernVM virtual machines
 all configured during contextualization
- Cluster context: one head node + scalable num. of workers
 → available on http://cernvm-online.cern.ch
- Portability and usability
 → both for users and system administrators
- One PROOF deployment for all LHC experiments

Overview of the VAF components

User interaction

- PoD to request and book workers
- PROOF to (re)use booked workers for analysis


Behind the scenes

- worker requests are scheduled by HTCondor*
 * can be any resource management system
- CernVM virtual machines are part of the HTCondor cluster

HTCondor

CernVM

VAF components: PROOF and PoD

- PROOF on Demand is a scheduler and resource broker for PROOF on a general purpose RMS
- Our virtual cluster is a special dedicated RMS

PROOF benefits from PoD:

- Sandboxing
 → no crash propagation to other users
- Self-servicing
 → users start/stop their personal PROOF cluster
- No system-wide configuration
 → config pushed by client, no privileged daemons

More stability and less administration efforts

PoD HTCondo

PROOF

CernVM

Services stack

VAF components: HTCondor

HTCondor is a resource management system:

- enqueues and schedules jobs
- manages a distributed cluster
- Usually, HTCondor jobs are independent
 → ours are communicating PROOF workers
- Adds efficient users scheduling to PROOF
 → user books resources that can be reused
- Dynamic workers addition with no configuration
 → new CernVM nodes promptly join the cluster

Queue + dynamic config = elasticity monitor the queue and start new VMs

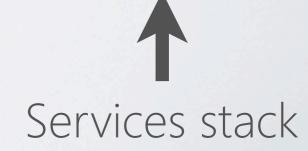
VAF components: the CernVM ecosystem

The CernVM ecosystem provides our reference platform:

- CernVM Virtual Machine

 consistent running and devel environment
- CernVM Filesystem
 sw downloaded transparently on demand
- CernVM Online

Dario Berzano


- → contextualize VMs and clusters via web
- CernVM Gateway (experimental)
 → talks with your clouds to instantiate VMs

See Jakob Blomer's presentation

HTCondor

PROOF on the Cloud using CernVM and PoD

9

Personal or multiuser?

Personal Analysis Facility Infrastructure as a Service

Shared Analysis Facility Software as a Service

- Users take care of deploying their cluster on the cloud
- User must have access to a cloud infrastructure

- A service administrator deploys the multi-user service
- End users are not responsible (nor aware) of the VMs

User analysis workflow is the same in both cases (always SaaS)

The Virtual Analysis Facility in practice

Instantiating the VAF

CernVM Online → *http://cernvm-online.cern.ch*

Dashboard

Your context definitions

	Name
8	VAF Ibex Master v1 🍐
8	VAF Ibex Node v1 🍐
No	Create new context w context ual Analysis Facility node e

Context template

Please fill the following parameters and click create in order to create a new virtual machine context definition

User configuration	511
Context name:	My PROOF Master
Role:	Master ÷
Auth method:	Pool accounts +
Num. pool accounts:	50
Proxy for CVMFS:	http://proxy.cern.ch
HTCondor shared secret:	type in any password
Context password:	

2. Customize options

Dashboard

Your context definitions

1. Create context

	Name	ID	Operations
8	My PROOF Master 🧅	5e81170380b0432aaed63e40e1d90bbd	Clone Publish 🚱 🚱
8	VAF Ibex Master v1 🍐	dd3d44092b094f898eca4464e3d65124	Clone with full options Get rendered context
8	VAF Ibex Node v1 🍐	3a7336b3485b4ba2918202b640a1c6c5	Clone Get raw use data

3. Get configuration → *cloud controller's "user data"*

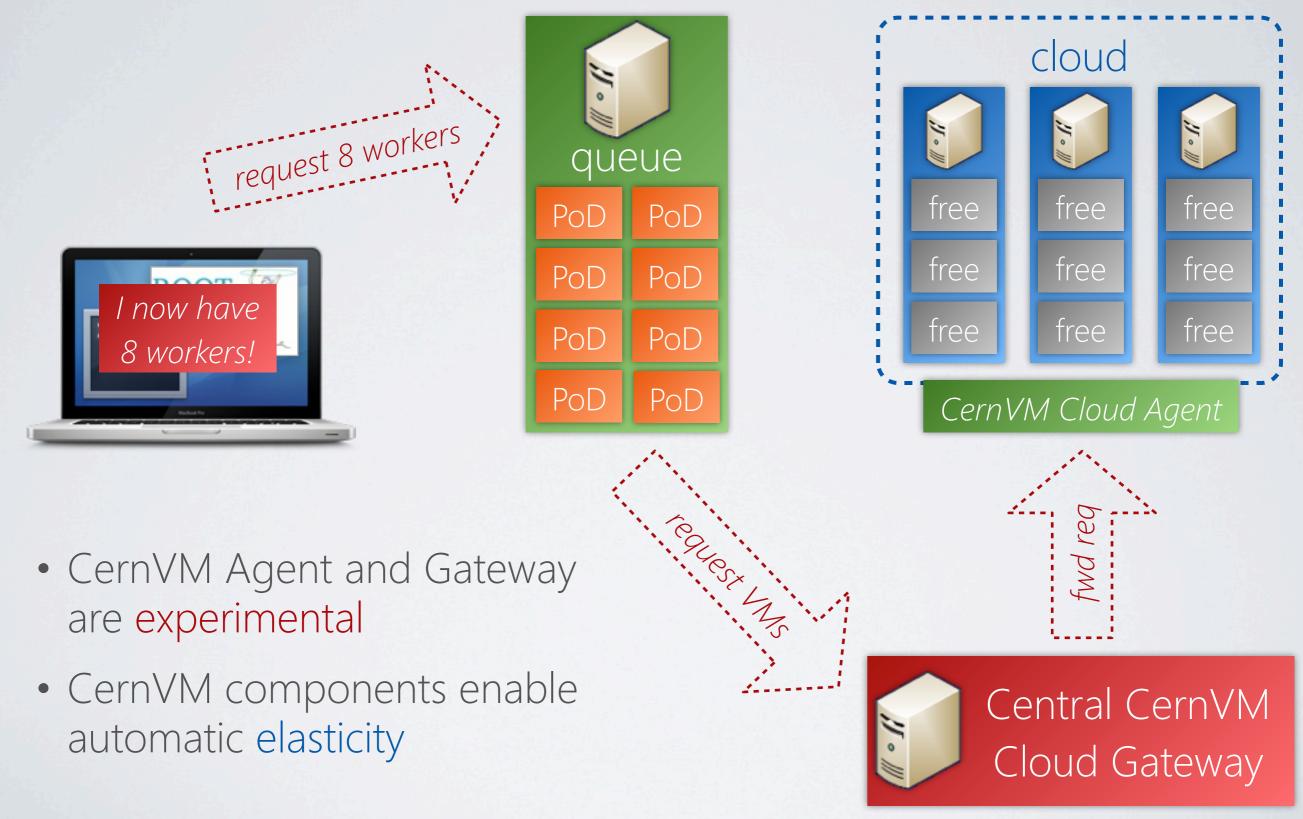
Dario Berzano

Using the VAF

۲	Mozilla Firefox (on portable-cvm)	0000
<u>File Edit View History Bool</u>		
New Tab	· 순	
	🔻 🕨 🥵 🛃 🗸 Google	
		0000
	•	
		=

Practical reference

Administrator's and User's manual *http://proof.web.cern.ch/*


- Virtual Analysis Facility client (only one script)
 → https://github.com/dberzano/virtual-analysis-facility
- Builtin authentication uses your Grid certificate and key for SSH
 → https://github.com/dberzano/sshcertauth

Sample user's configuration file for CMS

Version of CMSSW (as reported by "scram list")
export VafCmsswVersion='CMSSW_5_3_9_sherpa2beta2'

Development directions

Elasticity using CernVM components

Dario Berzano

PROOF on the Cloud using CernVM and PoD

PROOF development directions

Dynamic addition of workers

- Currently: new workers can be added to PROOF, but become available only on the next analysis
- Make possible for new workers to join an ongoing analysis
- Perfect for PoD: analysis could be started when only one requested worker is available, others will join automatically

Improve object sending and merging strategy

- Evaluate a non-locking master collector for output data
- Reduce master memory usage during merging

PoD and VAF in LHC experiments

ATLAS

- Future plans to do "cloud computing" (i.e., "VM submission")
 → PROOF is run mostly using PoD on local queues (PBS, LSF...)
- ATLAS software is officially on cvmfs
- Past attempts to exploit the Grid for PROOF using PoD gLite-WMS
- PoD Panda plugin is almost ready for testing

 Currently solving some Tier connectivity troubles
- Data access: mostly D3PD and skimmed D4PD via federated xrootd
 As soon as Panda is ready: xrootd access tests
- For ntuples output native Panda merging can be used
 → Interactive analysis with PROOF and deferred merging

Thanks to A. De Salvo for the contribution

Dario Berzano

CMS Padova

- VAF-like setup (yet on physical hardware) in Padova
 → it uses PROOF on Demand and the VAF client
- SL5 nodes configured like Grid nodes: no extra effort
 - all software from cvmfs, all data from Lustre, auth from LDAP
 - integrated in current local LSF: separated PoD queue used
- A few WNs and UIs currently enabled for PROOF (tests ongoing)
 → switched to PROOF when needed by changing LSF configuration
- Turned out that lack of documentation was a showstopper...
 → current documentation (http://proof.web.cern.ch/) is OK

Thanks to M. Sgaravatto for this contribution (and feedback!)

ALICE

- PROOF is officially part of the computing model
 → AAF: ALICE Analysis Facilities (http://aaf.cern.ch/)
- PoD not used for now
 → native PROOF is used
- Current analysis facilities are mostly static and on physical hardware
 notable exception: TAF in Torino, ancestor of the current VAF
- TAF (Torino Analysis Facility) is currently 100% VAF
 → CernVM + PoD + cvmfs
- Plans to gradually move CAF @ CERN to VAF
 → on CERN OpenStack infrastructure

Final considerations

- Every VAF layer is "cloud-aware" or "elastic":
 - HTCondor plays optimally with nodes added/removed on the go
 → "cattle computing", not "puppies" (http://bit.ly/15cMdrR)
 - PROOF has a pull-based dynamic workload assignment
 drop the assumption that same-sized VMs perform equally
- Single components are optional and non-obtrusive
 → e.g. elasticity is achieved by silently observing a queue
- VAF works out of the box with zero configuration
 → only the batch scheduler might need fine tuning for multiusers
- VAF reuses and integrates solid components
 → don't reinvent the wheel (http://bit.ly/134U4He)

Thank you!