
CernVM: Overview and Future Plans

D Berzano, J Blomer, P Buncic, I Charalampidis, G Ganis,
A Harutyunyan, G Lestaris, B Segal

jblomer@cern.ch

CERN PH-SFT

1 / 24

jblomer@cern.ch

Contents

1 Introduction to the CernVM Virtual Appliance

2 CoPilot: Connecting CernVMs to the Grid

3 CernVM Use Cases

4 𝜇CernVM: Slashing the Cost of Building and Deploying VMs

2 / 24

1 Introduction to the CernVM Virtual Appliance

2 CoPilot: Connecting CernVMs to the Grid

3 CernVM Use Cases

4 𝜇CernVM: Slashing the Cost of Building and Deploying VMs

3 / 24

CernVM Components

rAASystem Libraries &
Tools

CernVM-FS

Operating System Kernel

Contextualization

XMPP
HTTP (Amazon EC2)

cloud-init (in development)

HEPIX

Fuse

HTTP Cache
Hierarchy

CernVM Online CernVM Co-Pilot

1 Generic Stable Platform

2 CernVM-FS for
Software Delivery

3 Flexible Contextualization

4 Co-Pilot
Task Queue Connection

5 CernVM Online for
Context Bookkeeping

4 / 24

Horizontal Integration

Predrag Buncic / Pere Mato – CERN

Virtualization: Introduction to virtualization technology

8

Horizontal Integration

Traditional model
Horizontal layers
Independently developed
Maintained by the different groups
Different lifecycle

Application is deployed on top of
the stack

Breaks if any layer changes
Needs to be certified every time
when something changes
Results in deployment and
support nightmare

Application

Libraries
• Traditional worker node:

General purpose operating
system and libraries

• Independently developed and
deployed

• Different life cycles

• Applications break if any layer
changes

• Difficult to support multiple
applications

5 / 24

Vertical Integration

Predrag Buncic / Pere Mato – CERN

Virtualization: Introduction to virtualization technology

9

Vertical Integration

Application driven approach
Analyzing application
requirements and dependencies
Adding required tools and libraries
Building minimal OS
Bundling all this into Virtual
Machine image

Virtual Machine images should be
versioned just like the applications

Assuring accountability to mitigate
possible negative aspects of
newly acquired application
freedom

Virtual Machine

OS

Libraries

Tools

Databases

Application
• Application dependencies are

analyzed

• Virtual machine is defined by
these dependencies

• Results in a minimal operating
system

• Dependencies can be versioned
and stored as recipes

6 / 24

Contextualization

Simple API
• Instantiate + Contextualize

• Terminate

• List instances, list images

Contextualization plug-ins
• Credentials (ssh, X.509)

• Condor head & batch services

• Squid server

• XrootD storage proxy

• CernVM-FS

• Monitoring & directory service
agents

• Network configuration & tuning

!"#$%&'()*+',%-.//!"#$%&'()*+',%-.// 0(12(3456789:9;91(859+0(12(3456789:9;91(859+ #<=>#<=>?%/@%A3B?%%-.//%?%/@%A3B?%%-.//%CC -D-D

#'E,7F1(%#18F1(%:8%3%6'G

!"##"$%&'()*+'&%,"&-'.%/0%1("$-2'$.%$".'
34-+,%#4&-'(5%678%94-':405%&-"(49'%4$.%;88<%=(">0

?4+,%=,0&*+4@%$".'
!"$-(*/A-'&%-"%+"##"$%&-"(49'%%=""@
BA$&%,0='()*&"(5%/4-+,%%:"(C'(%%
?>="(-&%&-"(49'%@"+4@%&-"(49'%-"%+"##"$%=""@

D*(-A4@%E4+,*$'&
F-4(-'.%/0%-,'%&A*-4/@'%!@"A.%#*..@':4('
G$@0%@*#*-'.%"A-9"*$9%$'-:"(C%+"$$'+-*)*-0%)*4%
94-':40%$".'H;88<%=(">0
7++'&&%-"%.4-4%1*@'&%)*4%<GFIJ%K1*@'%&0&-'#L%@40'(
F"1-:4('%.'@*)'('.%-"%DE&%1("#%M'/%&'()'(%('="&*-"(0
3A*@-%1"(#%('+*='&%4$.%+"#="$'$-&%&-"('.%*$%&-("$9@0%
)'(&*"$'.%('="&*-"(0

7++'&&%-"%'>-'($4@%#4&&%&-"(49'%)*4%&-"(49'%=(">0
?$.%A&'(%7<I%-"%&A/#*-%N"/&

;88<
<(">0

F-"(49'
<(">0

678
O4-':40

34-+,
E4&-'(

P

!'($DE

!'($DE

!'($DE

F-"(49'
F'()'(

34-+,
M"(C'(;0='()*&"(

PQQ$

EFF

PQQPQQ

FHM 8!<HI< 7<I
7 / 24

CernVM Online: Context Bookkeeping & Pairing

8 / 24

CernVM Online: Context Bookkeeping & Pairing

8 / 24

CernVM Online: Context Bookkeeping & Pairing

8 / 24

CernVM Online: Context Bookkeeping & Pairing

8 / 24

CernVM Online: Context Bookkeeping & Pairing

8 / 24

1 Introduction to the CernVM Virtual Appliance

2 CoPilot: Connecting CernVMs to the Grid

3 CernVM Use Cases

4 𝜇CernVM: Slashing the Cost of Building and Deploying VMs

9 / 24

CoPilot Architecture

Challenges: untrusted environment, transparency for grid users
!"#$%&'!()*+,(-'.#/0+-"/-1#"

.#-"2345#1-61$65$7/"#$3/0 !48*'9:;: <5+="+>'?/-(@"#'9;'9:;:''ASource: Harutyunyan

10 / 24

CoPilot Adapter for AliEn!"#$%&'()&*+()(

!,-)./0+,'-1'21+23*),2/*4 $0%5&6787 9+:;):<&=*->?),&68&6787&&88Source: Harutyunyan

A similar adapter has been developed for PanDA/ATLAS

11 / 24

CoPilot Generic Task Queue

Very simple, file based I/O queue

!"#$%&'()*"+,%#%)($-"#+.'/01+234+56%+7(6%+

8)$%9:3()5$;5#;(#<7%)#:7= '3/>+?@A@ 2(-B%-C+D7$"E%)+?A+?@A@++AF
Source: Harutyunyan

• Runs volunteer computing for CERN theory group
in “auto-pilot mode” for over a year

• . . . more in the following slides
12 / 24

1 Introduction to the CernVM Virtual Appliance

2 CoPilot: Connecting CernVMs to the Grid

3 CernVM Use Cases

4 𝜇CernVM: Slashing the Cost of Building and Deploying VMs

13 / 24

CernVM Use Cases

• Portable Development and Analysis Environment
Identical environment for development and execution of HEP applications.

• Virtual Analysis Facility
Medium-size data sets, fast response time:
CernVM + PROOF (+ · · ·), see Dario’s talk

• Better Use of High-Level Trigger Farms
HLT nodes are delicate resources.
VMs provide a non-intrusive means to do offline computing on HLT nodes.
Instant switch from online to offline computing and vice versa.

• Volunteer Computing
Part of experiment’s outreach program.
Use of computing resources of volunteers without the need to change or
port applications.

• Preservation of Historic Data Processing Environment
Historic data are useless without the ability to interpret them. The strong
versioning in CernVM and CernVM-FS allows for respawning a historic
data processing environment.

14 / 24

CernVM Use Cases

• Portable Development and Analysis Environment
Identical environment for development and execution of HEP applications.

• Virtual Analysis Facility
Medium-size data sets, fast response time:
CernVM + PROOF (+ · · ·), see Dario’s talk

• Better Use of High-Level Trigger Farms
HLT nodes are delicate resources.
VMs provide a non-intrusive means to do offline computing on HLT nodes.
Instant switch from online to offline computing and vice versa.

• Volunteer Computing
Part of experiment’s outreach program.
Use of computing resources of volunteers without the need to change or
port applications.

• Preservation of Historic Data Processing Environment
Historic data are useless without the ability to interpret them. The strong
versioning in CernVM and CernVM-FS allows for respawning a historic
data processing environment.

14 / 24

CernVM Use Cases

• Portable Development and Analysis Environment
Identical environment for development and execution of HEP applications.

• Virtual Analysis Facility
Medium-size data sets, fast response time:
CernVM + PROOF (+ · · ·), see Dario’s talk

• Better Use of High-Level Trigger Farms
HLT nodes are delicate resources.
VMs provide a non-intrusive means to do offline computing on HLT nodes.
Instant switch from online to offline computing and vice versa.

• Volunteer Computing
Part of experiment’s outreach program.
Use of computing resources of volunteers without the need to change or
port applications.

• Preservation of Historic Data Processing Environment
Historic data are useless without the ability to interpret them. The strong
versioning in CernVM and CernVM-FS allows for respawning a historic
data processing environment.

14 / 24

CernVM Use Cases

• Portable Development and Analysis Environment
Identical environment for development and execution of HEP applications.

• Virtual Analysis Facility
Medium-size data sets, fast response time:
CernVM + PROOF (+ · · ·), see Dario’s talk

• Better Use of High-Level Trigger Farms
HLT nodes are delicate resources.
VMs provide a non-intrusive means to do offline computing on HLT nodes.
Instant switch from online to offline computing and vice versa.

• Volunteer Computing
Part of experiment’s outreach program.
Use of computing resources of volunteers without the need to change or
port applications.

• Preservation of Historic Data Processing Environment
Historic data are useless without the ability to interpret them. The strong
versioning in CernVM and CernVM-FS allows for respawning a historic
data processing environment.

14 / 24

Volunteer Computing: LHC@Home 2.0

Monte-Carlo simulations, parameter tuning
First BOINC project using virtual machines

!

!"#$%&'(#")*+*#,+*#-.++*/"01#2#345'$#6+78*-"9(#:7")#;<")</#")*#=>$?)7@*#60,"A7+@B

!"#$%&'((#<9#,#-0,99<-
345'$#6+78*-"#;<")#*C*-.",:0*9
A7+#=</.C#,/D#E</D7;9F

G)*#A7+.@9#,/D#7."+*,-)
,+*#),/D0*D#:1#")*#H<C"+,-I
"*,@#</#3%#J*6,+"@*/"#,/D
,"#%KL=F

)*+$,)-*.%/(#,#MN#:,9*D#
345'$#6+78*-"#+.//</O
N7/"*#$,+07#*P*/"#O*/*+,"7+9#
0<I*#!=KQ%'(#>%&M5QRR#,/D
KSG>5!F#!00#")*#6+7O+,@9#,+*
+.//</O#./D*+#$*+/MN#7/#
)16*+P<97+9#7/#")*#P70./"**+#K$9F

G)*#9<"*#-7/",</9#,/#,-"<P*
7."+*,-)#6,+"#,/D#/7",:01#0</I9
"7#9-<*/"<A<-#;7+I#7A#")*#9-<*/"<9"9
</P70P*D#</#")*#6+78*-"F
T)""6BUU@-607"9F-*+/F-)V
#

#

!"#$%&'(#)'%#*+!,#%-!./012

W9*#7A#P<+".,0<9,"<7/# "*-)/707O1#;<")#345'$# A+**9# ")*#9-<*/"<9"9# A+7@# ")*#-7/9"+,</"9#7A#67+"</O#
")*<+#97A";,+*#"7#D<AA*+*/"#,+-)<-"*-".+*9#7A#P70./"**+#K$9F

./0123!-*,!4*5)!#%!,*$67

G)*# 3*+I*0*1# 46*/# 5/A+,9"+.-".+*# A7+# '*";7+I#
$7@6"</O# T345'$V#,007;9# 9-<*/"<9"9# "7#),+/*99#
-7@6."</O# 67;*+# A+7@# ")7.9,/D9# 7A# P70./"**+#
K$9#A7+#")*<+#9-<*/"<A<-#-7@6."</O#6+78*-"9F

G)*# -0<*/"9# -7//*-"# "7# ,# -*/"+,0# 345'$# 9*+P*+#
P<,#")*#;*:#,/D#D7;/07,D#87:9#A+7@#")*+*F

E)*/#")*#-7@6.","<7/9#7/#")*#P70./"**+#K$#,+*#
A</<9)*D(# ")*# +*9.0"</O#7."6."# A<0*9#,+*#.607,D*D#
"7# ")*# 345'$# 9*+P*+# ,/D# ")*# +*9.0"9# +*67+"*DF#
G)*#.9*+#O*"9#!"#$%&%'()*+#A7+#)<9#;7+IF

345'$#9*+P<-*#A7+#P70./"**+#-07.D#
-7@6."</O

!0P,+7#Q7/X,0*X#!0P,+*X(#'<09#!"#$%&(#K*"*+#=F#Y7/*9(#N<O.*0#!F#N,+Z.</,(#3*/#H*O,0#T$%&'U5GV
K+*D+,O#3./-<-(#Y,I7:#307@*+(#!+"*@#>,+."1./1,/(#!/"7/#[,+/*1*.(#K*"*+#HI,/D9#T$%&'UK>V

N,99<@7#Q<7P,//7XX<(#%+<-#N-5/"79)(#T$%&'U3%V(#5O7+#\,-),+7P#T%KL=V
J,/<*0#=7@:+,],#Q7/X^0*X(#L+,/-7<9#Q+*1#T$<"<X*/9#$1:*+9-<*/-*#$*/"+*V##

0+%$*4&8%#*+

!"#$%&'(#")*#%.+76*,/#=,:7+,"7+1#A7+#><O)#%/*+O1#K)19<-9(#M70./"**+#-7@6."</O#),9#:**/#.9*D#A7+#=>$#:*,@#D1/,@<-9#9".D<*9#;<")#H<C"+,-I#9</-*#2__`F###
H7@*#a_#___#P70./"**+9#;<")#@7+*#"),/#b__#___#K$9#),P*#,-"<P*01#-7/"+<:."*D#-7@6."</O#67;*+#A7+#=>$#9<@.0,"<7/9#9</-*#2__`F##

G),/I9#"7#D*P*076@*/"9#;<")#$*+/MN#,/D#P<+".,0<9,"<7/(#/7;#,097#6)19<-9#9<@.0,"<7/9#,+*#+.//</O#./D*+#345'$F##N7/"*#$,+07#*P*/"#O*/*+,"<7/#7A#-700<9<7/9#
,"#")*#=>$#,+*#+.//</O#7/#M70./"**+#K$9#-7//*-"*D#"7#")*#G*9"`G)*7+1#6+78*-"(#;<")#+*9.0"9#A7+#.9*+9#,P,<0,:0*#7/#")*#9<"*B#)""6BUU@-607"9F-*+/F-)U

9&::'$;
W9*#7A#M<+".,0<9,"<7/#G*-)/707O1#;<")#M70./"**+#$7@6."</O#7P*+-7@*9#")*#6+</-<6,0#7:9",-0*#A7+#.9</O#P70./"**+#K$9#,9#,#
-7@6."</O#+*97.+-*#</#><O)#%/*+O1#K)19<-9F##G)*#-.++*/"#6+78*-"c:,9*D#,66+7,-)#"7#M70./"**+#$7@6."</O#,"#$%&'#;<00#
O+,D.,001#*P70P*#"7;,+D9#,#O*/*+,0#9*+P<-*(#;)*+*#")*#M70./"**+#$07.D#-,/#:*#-7/9<D*+*D#,9#,#-7@6."</O#+*97.+-*F##G)*#
7."+*,-)#,96*-"#7A#M70./"**+#$7@6."</O#),9#,#07"#7A#67"*/"<,0(#,/D#;*#9)7.0D#/7"#/*O0*-"#")<9#-7@@./<-,"<7/#-),//*0F

!"#$%&'()*(+($,-.,%.%/0."%''(1*/(-.20%34)4$*.,5(./$)(0'64$*.78.-(034"(-.1$).122'4"1,4%$-9.!$).'1-,:.;/,.$%,.'(1-,:.,%.,5(.,5%/-1$)-.%<.3%'/$,((0-.&5%.10(.)%$1,4$*."%+2/,4$*.2%&(09.

'()*+,-./*0)&1)&*0)234*5555
*

!"#$%&'()*+$,-&.$/&0#.&12$2#+#*+&3

./012!<$*=58%)! /&%(**6!>*$!'!./012!)5$?#85
$

G)*# 345'$# -0<*/"# D7;/07,D9# ,#
345'$#d#$*+/MN#;+,66*+#A+7@#")*#
345'$#6+78*-"#9*+P*+F

$*+/MN#+./9#./D*+# ")*#>16*+P<97+#
7A# ")*# M70./"**+# K$(# ,/D#
D7;/07,D9# ",9I9# A+7@# ")*# 6+78*-"#
P<,# ")*# $7cK<07"# 87:# @,/,O*@*/"#
A+,@*;7+IF

G)<9#9-)*@*#<9#9.<",:0*#A7+#,00#I</D9#
7A#9<@.0,"<7/#7+#,/,019<9#;<")#9@,00#
D,",#9*"9#6+F#87:F

!/1# 6)19<-9# 97A";,+*# "),"# -,/# +./#
./D*+# $*+/MN# -,/# :*/*A<"# A+7@#
P70./"**+# -7@6."</O# 67;*+# ./D*+#
345'$F

,((&-./0&1'+(2&3-'4+5465-67/&8'(/(6+-+*06&06&%('69:&%0;<*.0+&
-6)&+=(&+-.>&06&%('692?,&@5&A->0@&!.42('B

G)*7+1

=>$#!--F

!"0,9

$NH

&7","</O#87:9

9-'$54!>$*+%@5+4!

AB2C-*:5!<*$%'($

J<9"+<:."<7/#7A#D<AA*+*/"#
"16*9#7A#87:9#"7#")*#
P70./"**+#-07.D#;7.0D#,00#O7#
P<,#$*+/MN(#/7#/**D#A7+#
D*D<-,"*D#345'$#
C-.",:0*9F

Y7:9#A+7@#D<AA*+*/"#6+78*-"9#
-,/#:*#D<96,-"-)*D#"7#
P70./"**+9#P<,#,#+7","</O#87:#
9-)*@*F
#
J*6*/D</O#7A#6+7-*99</O#
/**D9#A+7@#")*#9*+P<-*#
-.9"7@*+9(#")*+*#;7.0D#:*#
87:9#A+7@#")*#G)*7+1#O+7.6(#
=>$#,--*0*+,"7+#9".D<*9(#7+#
A+7@#!0<-*(#!"0,9(#$NH(#
=>$:#*"-F

Numbers
• At any point in time

600–700 VMs connected

• Overall: 9 · 1011 events created

Source: Harutyunyan

15 / 24

Volunteer Computing: LHC@Home 2.0

Geographic distribution, 28. May 2013, 2500 distinct IPs

15 / 24

CernVM Use Cases

• Portable Development and Analysis Environment
Identical environment for development and execution of HEP applications.

• Virtual Analysis Facility
Medium-size data sets, fast response time:
CernVM + PROOF (+ · · ·), see Dario’s talk

• Better Use of High-Level Trigger Farms
HLT nodes are delicate resources.
VMs provide a non-intrusive means to do offline computing on HLT nodes.
Instant switch from online to offline computing and vice versa.

• Volunteer Computing
Part of experiment’s outreach program.
Use of computing resources of volunteers without the need to change or
port applications.

• Preservation of Historic Data Processing Environment
Historic data are useless without the ability to interpret them. The strong
versioning in CernVM and CernVM-FS allows for respawning a historic
data processing environment.

16 / 24

NA61 Production Jobs in Belgrade
Integration of a CernVM cloud with a data provenance system

17 / 24

1 Introduction to the CernVM Virtual Appliance

2 CoPilot: Connecting CernVMs to the Grid

3 CernVM Use Cases

4 𝜇CernVM: Slashing the Cost of Building and Deploying VMs

18 / 24

𝜇CernVM

Classic CernVM

rAA System Libraries &
Tools

CernVM-FS

Operating System Kernel

Contextualization

XMPP
HTTP (Amazon EC2)

cloud-init (in development)

HEPIX

Fuse

HTTP Cache
Hierarchy

CernVM Online CernVM Co-Pilot

• Uniform and portable environment for physics data processing
• Minimal operating system derived from application dependencies
• Easy to maintain and to distribute

19 / 24

𝜇CernVM

𝜇CernVM

initrd: CernVM-FS + 𝜇Contextualization

AUFS R/W Overlay

OS + Extras

KernelIS
O

Im
ag

e
Sc

ra
tc

h
H

D

XMPP
HTTP (Amazon EC2)

cloud-init (in development)

FuseAUFS

CernVM Online CernVM Co-Pilot

Idea: Operating system on CernVM-FS
Instead of 400MB hard disk image: 10 MB ISO image + 100MB cache.

• Not a LiveCD, not a diskless node
⇒ Operating System on Demand

19 / 24

𝜇CernVM Root File System Stack

• AUFS well-maintained kernel
module

• < 5% performance loss (untar)

• Some use cases faster due to
CernVM-FS meta-data handling

CernVM-FS Read-Only

Read/Write Scratch Area

AUFS
(Union File System)

Read/Write
Interface

• Root file system created in early user space by init ramdisk script

• Difficulty: shutdown and proper unfolding of the stack
Required a few twists to SL6 halt script and CernVM-FS

20 / 24

Booting 𝜇CernVM

21 / 24

Build Process: Scientific Linux on CernVM-FS
Maintenance of the repository must not become a Linux distributor’s job
But: should be reproducible and well-documented

Idea: Automatically generate a fully versioned, closed package list
from an unversioned “shopping list” of packages
(Standard package managers are not designed for preservation!)

Scientific Linux SL Cern CentOS

· · ·

!""#
$%&"'#
(#

Formulate dependencies as
Integer Linear Program (ILP) M

irr
or

D
ep

en
de

nc
y

C
lo

su
re

yum install
on CernVM-FS

22 / 24

𝜇CernVM Changes the VM Life Cycle

2. Prepare
Repositories

3. Build 4. Test

1. Plan

6. Instantiate

9. Terminate 8. Monitor

7. Contextualize

5. Endorse

10. Feedback

Development
Cycle

Deployment
Cycle

User InfrastructureCernVM Infrastructure

11. Retire

Figure 1: Visual representation of the two sub-cycles that form the Virtual Machine Lifecycle.

2. The Virtual Machine Lifecycle
A virtual machine passes through various different stages throughout it’s life. These stages are
just a logical separation of the fundamental procedures that are common for the maintenance of
every virtual machine (VM). They are usually independent and are associated with a specific set
of tools. For instance, the life of the VM begins when the specifications of the build process are
prepared and stored in a reference database, and it is terminated after it has completed the job it
was instantiated for. In order to find an optimal solution it is important to identify those stages,
the tools associated with them and their dependencies. This way the appropriate tools can be
grouped with the stages and form a stand-alone and independently-maintained component.

In the CernVM Project we pass through all stages of the every time we release a new version.
In our case, after a VM instance completes it’s cycle, user feedback is processed and a new
development cycle begins. Because of this cycling pattern, we decided to use the term lifecycle to
refer to the life of CernVM. This lifecycle can be split into two logical sub-cycles: the development
cycle and the deployment cycle (Figure 1).

The development cycle begins with the definition of the specifications and finishes with the
production of the distributable VM media. This cycle is performed entirely inside the CernVM
infrastructure.

The deployment cycle begins with the instantiation of the released image and finishes with the
termination of the instance. This cycle is performed outside the CernVM infrastructure, such as
a public or private cloud infrastructure (e.g. Amazon or OpenNebula) or an individual computer
(e.g. desktop hypervisors or a small computer farm). In all these cases, the OS needs to contact
the CernVM infrastructure in order to obtain contextualization information and software packages
from our repository.

The two cycles are connected via two intermediate stages: The release of the produced image
to the public and the feedback that is collected from the users and triggers a new development
cycle. The two stages are in the borders that split the private infrastructure and the public.

As was mentioned before, each stage is independent and is typically supported by a number of
specialized tools.

Plan: This is a stage on which the desired functionality of the VM is planned. The resulting

23 / 24

𝜇CernVM Changes the VM Life Cycle

2. Prepare
Repositories

3. Build 4. Test

1. Plan

6. Instantiate

9. Terminate 8. Monitor

7. Contextualize

5. Endorse

10. Feedback

Development
Cycle

Deployment
Cycle

User InfrastructureCernVM Infrastructure

11. Retire

Figure 1: Visual representation of the two sub-cycles that form the Virtual Machine Lifecycle.

2. The Virtual Machine Lifecycle
A virtual machine passes through various different stages throughout it’s life. These stages are
just a logical separation of the fundamental procedures that are common for the maintenance of
every virtual machine (VM). They are usually independent and are associated with a specific set
of tools. For instance, the life of the VM begins when the specifications of the build process are
prepared and stored in a reference database, and it is terminated after it has completed the job it
was instantiated for. In order to find an optimal solution it is important to identify those stages,
the tools associated with them and their dependencies. This way the appropriate tools can be
grouped with the stages and form a stand-alone and independently-maintained component.

In the CernVM Project we pass through all stages of the every time we release a new version.
In our case, after a VM instance completes it’s cycle, user feedback is processed and a new
development cycle begins. Because of this cycling pattern, we decided to use the term lifecycle to
refer to the life of CernVM. This lifecycle can be split into two logical sub-cycles: the development
cycle and the deployment cycle (Figure 1).

The development cycle begins with the definition of the specifications and finishes with the
production of the distributable VM media. This cycle is performed entirely inside the CernVM
infrastructure.

The deployment cycle begins with the instantiation of the released image and finishes with the
termination of the instance. This cycle is performed outside the CernVM infrastructure, such as
a public or private cloud infrastructure (e.g. Amazon or OpenNebula) or an individual computer
(e.g. desktop hypervisors or a small computer farm). In all these cases, the OS needs to contact
the CernVM infrastructure in order to obtain contextualization information and software packages
from our repository.

The two cycles are connected via two intermediate stages: The release of the produced image
to the public and the feedback that is collected from the users and triggers a new development
cycle. The two stages are in the borders that split the private infrastructure and the public.

As was mentioned before, each stage is independent and is typically supported by a number of
specialized tools.

Plan: This is a stage on which the desired functionality of the VM is planned. The resulting

Avoids: Image Building Solves: Image Distribution

Options for updating: stay, diverge, rebase

23 / 24

Summary

• For a virtualized infrastructure: development environment is
production environment

• By encapsulating the runtime environment in light-weight virtual
machines, applications can be sent to volunteers and “interested
citizens”

• Strongly-versioned, VM encapsulated runtime environments facilitate
long-term data preservation

• The CernVM appliance aims at avoiding image proliferation through
• A small base image defined by application dependencies
• CernVM-FS to distribute experiment software
• Flexible contextualization means

• 𝜇CernVM avoids the need to distribute hard disk images altogether

𝜇CernVM Technology Preview:
http://cernvm.cern.ch/portal/ucernvm

24 / 24

http://cernvm.cern.ch/portal/ucernvm

	Introduction to the CernVM Virtual Appliance
	CoPilot: Connecting CernVMs to the Grid
	CernVM Use Cases
	CernVM: Slashing the Cost of Building and Deploying VMs

