GigaTracker, a Thin and Fast Silicon Pixels **Tracker**

Bob Velghe[∗] on behalf of the GigaTracker Working Group

RD13 - 11th International Conference on Large Scale Applications and Radiation Hardness of Semiconductor Detectors. Firenze, July 3-5, 2013

[∗]Boursier FRIA, Centre for Cosmology, Particle Physics and Phenomenology - Louvain-la-Neuve, Belgium

Everybody is looking for hints of physics **Beyond the Standard Model**.

Intensity frontier: Make precise measurements of rare processes.

Very good time and position resolution are needed for **background rejection**. Difficult to achieve while keeping a low material budget.

Outline

[Introduction](#page-3-0)

[GigaTracker Design](#page-5-0) [Sensor and Read-Out](#page-7-0) [Cooling](#page-12-0) [Mechanical Integration](#page-15-0)

[GigaTracker in Concrete Terms](#page-17-0) [Bump-bonding](#page-18-0) [Time Resolution](#page-19-0) [Microchannel Cooling Performance](#page-22-0) [Radiation Hardness](#page-24-0)

[Summary](#page-27-0)

Outline

[Introduction](#page-3-0)

[GigaTracker Design](#page-5-0) [Sensor and Read-Out](#page-7-0) [Cooling](#page-12-0) [Mechanical Integration](#page-15-0)

[GigaTracker in Concrete Terms](#page-17-0) [Bump-bonding](#page-18-0) [Time Resolution](#page-19-0) [Microchannel Cooling Performance](#page-22-0) [Radiation Hardness](#page-24-0)

[Summary](#page-27-0)

NA62 Experimental Setup

Our main goal is to measure $\mathrm{BR} \left(K^+ \to \pi^+ \nu \bar{\nu} \right) \approx \mathcal{O} \left(10^{-10} \right)$.

- \blacktriangleright Fixed target experiment at CERN SPS,
- \blacktriangleright High intensity 75 GeV/c hadron beam, K^+ (7 %), π^+ and p
- \blacktriangleright Particle identification, particle vetos, kinematic measurements

The signal we looking for is one K^+ upstream, a π^+ downstream and nothing else.

Outline

[Introduction](#page-3-0)

[GigaTracker Design](#page-5-0) [Sensor and Read-Out](#page-7-0) [Cooling](#page-12-0) [Mechanical Integration](#page-15-0)

[GigaTracker in Concrete Terms](#page-17-0) [Bump-bonding](#page-18-0) [Time Resolution](#page-19-0) [Microchannel Cooling Performance](#page-22-0) [Radiation Hardness](#page-24-0)

[Summary](#page-27-0)

GigaTracker Key Requirement

GigaTracker has to provides momentum, time of passage and direction of beam particle. Crucial for kinematic background rejection,

- **F** Sees all beam particles, must **sustain a high and non-uniform** $\mathsf{rate},\ (\mathrm{1.3\ MHz/mm^2}$ in the center, 750MHz total),
- ▶ Has to be as thin as possible to avoid inelastic scatterings $(< 0.5 \% X_0$ or < 470 um of Si),
- \blacktriangleright We need **good timing resolution** to match upstream K^+ track with downstream π^+ track ($<$ 200 ps $/$ hit).

Sensor and Read-out Chips Layout

The 60 mm \times 27 mm \times 200 µm sensor is bump-bonded to ten read-out chips. This allows to spread the rate over the chips.

Each chip covers 1800 300 μ m \times 300 μ m pixels, digital part of the circuitry is at the extremity to migitate the radiation damages.

Read-out Chip Characteristics

1800 pixels / front-end channels per chip.

Chip dimensions 12×19 mm² Chip thickness 50 – 100 μ m
Dissipated power (analog) $\approx 0.4 \text{ W/cm}^2$ Dissipated power (analog) $\approx 0.4 \text{ W/cm}^2$
Dissipated power (digital) $\approx 2.95 \text{ W/cm}^2$ Dissipated power (digital)

Read-out Electronics

- \triangleright Digital and analog part are well separated,
- \blacktriangleright Fast preamplifier-shaper in each pixel,
- \blacktriangleright Time-over-threshold discriminators.

Hit information: leading edge, trailing edge, address and pile-up flag.

Time-over-Threshold - Time-walk Correction

Time-walk correction takes advantage of the relation between time-walk and time-over-threshold.

Data Readout

Each chip send data off via four 3.2 Gbit/s optical fibers (40 links per station)

We store the full data-flow waiting for a L0 trigger decision (1 ms latency). We then only keep the data in 75ns window around the trigger.

Triggerless architecture.

Microchannel Cooling

The chips $\&$ sensor must be kept at low temperature $(<$ 5 $^{\circ}$ C) to cope with radiation damages and keep the the leakage current small.

Solution, two bonded silicon wafers with liquid coolant (C_6F_{14}) circulating in microchannels:

- \blacktriangleright Low material budget ($< 0.15\% X_0$),
- \blacktriangleright High thermal stablity,
- \blacktriangleright High thermal uniformity $(\pm 3^{\circ} \mathcal{C})$,
- \triangleright Reaction time to power/hydraulic failures (time to trigger the power interlook).

Full scale prototype available, characterization ongoing.

Microchannel Cooling - Baseline Option

Drawing not to scale: 200 \times 70 $\mu \mathrm{m}^2$ channels separated by a 200 $\mu \mathrm{m}$ wall, 30 μ m top and bottom covers.

Material in the acceptence area: $0.13\%X_0$ (130 um).

Microchannel Cooling - Frame Option

Takes advantage of the fact that the digital part of the chip has the highest power dissipation.

No material at all in the active area but requires a thicker chip $(200 \mu m)$ to get a reasonable ΔT over the sensor.

Mechanical Integration

Mechanical Integration

Outline

[Introduction](#page-3-0)

[GigaTracker Design](#page-5-0) [Sensor and Read-Out](#page-7-0) [Cooling](#page-12-0) [Mechanical Integration](#page-15-0)

[GigaTracker in Concrete Terms](#page-17-0) [Bump-bonding](#page-18-0) [Time Resolution](#page-19-0) [Microchannel Cooling Performance](#page-22-0) [Radiation Hardness](#page-24-0)

[Summary](#page-27-0)

Bump-Bonding

Thinning and bump-bonding studies on dummy components at IZM (Berlin, Germany).

Readout chips thinned to 58 µm !

Demonstrator and Test Beam

- \blacktriangleright 10 GeV/c π^+ & p,
- \blacktriangleright 4 GigaTracker prototypes (45 pixels),
- \blacktriangleright Fast scintillators $(\sigma_t = 43 \text{ ps})$ used as timing reference.

Test Beam - Main Results

Small variations mainly induced by pixel-by-pixel threshold variation. After ToT correction: $V_{bias} = 300 \text{ V} \rightarrow \sigma_t = 175 \text{ ps}.$

Test Beam - Main Results

As expected, clear dependence on V_{bias} .

Microchannel Cooling

First Si-Si assembly delivered by IceMos and Si-Pyrex cooling plate with heater assembly.

Microchannel Cooling - Main Results

Require $T_{in} = -25^{\circ}$ C to keep the sensor below 0℃.

Mass flow $10 g/s$

Require $T_{in} = -15^{\circ}$ C to keep the sensor below 0°C.

Radiation Hardness - Wafers & Diodes

Wafers manufactured by FBK Trento, $\mathrm{n}^{+}-\mathrm{in}-\mathrm{p}$ type.

Twelve $0.5 \times 0.5 \times 0.02$ cm³ diodes were diced from each wafer and irradiated with 50 MeV protons at Louvain-la-Neuve cyclotron.

The expected fluence is $\approx 2 \times 10^{14}$ $1 \text{ MeV } \text{n}_{\text{eq}}/\text{cm}^2$ for 100 days of operation (sensor center).

Leakage Current (at 20°C and −400 V)

Leakage current @ 20°C

 $\Delta I^{V}=\alpha\cdot\Delta\phi$ with $\alpha=4\times10^{-11}$ μ $\rm A~cm^{-1}$ in the literature.

Depletion Voltage

Depletion voltage

Outline

[Introduction](#page-3-0)

[GigaTracker Design](#page-5-0) [Sensor and Read-Out](#page-7-0) [Cooling](#page-12-0) [Mechanical Integration](#page-15-0)

[GigaTracker in Concrete Terms](#page-17-0) [Bump-bonding](#page-18-0) [Time Resolution](#page-19-0) [Microchannel Cooling Performance](#page-22-0) [Radiation Hardness](#page-24-0)

[Summary](#page-27-0)

GigaTracker is

- Fast, σ_t < 175 ps at V_{bias} = 300 V,
- ▶ Thin, $X/X_0 < 0.5\%$,
- Innovative, it takes advantage of microchannel cooling.

The prototype meets all the specifications and is well tested We are now building the full scale detector.

Data Taking due to start in fall 2014.

Backup slides

Schedule

Kinematical Background Rejection

92 % of background can be separated from the signal by kinematic cuts.

$$
m^2_{\text{miss}} = \left(p_k - p_\pi\right)^2 \approx m^2_{\text{K}}\left(1 - \frac{|\mathbf{p}_\pi|}{|\mathbf{p}_\text{K}|}\right) + m^2_\pi\left(1 - \frac{|\mathbf{p}_\text{K}|}{|\mathbf{p}_\pi|}\right) - |\mathbf{p}_\pi||\mathbf{p}_\text{K}|\theta_\pi^2_{\text{K}}
$$

Background Rejection

 \blacktriangleright Particle identification

- \blacktriangleright Tag the K^+ with **KTAG**,
- \blacktriangleright π/μ with **RICH**.
- \blacktriangleright Particle vetoes
	- ► Photons vetos $(K^+ \to \pi^+ \pi^0$ and radiative decays) with L**AV**, LKr, **SAC** and **IRC**,
	- \blacktriangleright Muons vetos $(K^+ \to \mu^+ \nu)$ with MUV,
	- **Inelastic scattering products with CHOD and CHANTI.**
- **I** Kinematic measurements with **GigaTracker** and **STRAW** $(K^+ \to \pi^+ \pi^0, K^+ \to \mu^+ \nu, K^+ \to \pi^+ \pi^- \pi^0).$

Why $K^+ \to \pi^+ \nu \bar{\nu}$?

Precise theoretical prediction and sensitive to new physics!

Short-distance contributions dominates (internal top quark)[†],

- ► Hadronic Matrix elements is related to $K^+ \to \pi^0 e^+ \nu_e$ decay[‡],
- \triangleright Long distance contribution suppressed (GIM mechanism).

[†] J. Brod et al. (Phys. Rev. D, 83, 034030).

[‡] F. Mescia and C. Smith (Phys. Rev. D, 76, 034017).

$K^+ \to \pi^+ \nu \bar{\nu}$ - What are we Hunting Down?

$$
\begin{aligned} \text{BR}\left(\mathcal{K}^+ \to \pi^+ \nu \bar{\nu}\right)_{\text{SM}} &= \left(7.81^{+0.80}_{-0.71} \pm 0.29\right) \times 10^{-11} \\ \text{BR}\left(\mathcal{K}^+ \to \pi^+ \nu \bar{\nu}\right)_{\text{E949}} &= \left(17.3^{+11.5}_{-10.5}\right) \times 10^{-11} \end{aligned}
$$

Our goal: detect $\mathcal{O}(100)$ $K^+ \rightarrow \pi^+ \nu \bar{\nu}$ with $\approx 10 \%$ background over two years of data taking.

We'll try to put constraints on new physics models.

[∗]SM : Brod et al. (Phys. Rev. D, 83, 034030). E949 : Artamonov et al. (Phys. Rev. D, 79, 092004).

Leakage Current Rescaling

$$
I(T) = I(T_\mathrm{meas}) \times \left(\frac{273.2 + T}{273.2 + T_\mathrm{meas}}\right)^{\frac{3}{2}} \times \exp\left\{\frac{E}{k}\left(\frac{1}{273.2 + T_\mathrm{meas}} - \frac{1}{273.2 + T}\right)\right\}
$$

With $k = 8.716 \times 10^{-5} \text{ eV K}^{-1}$, the Boltzmann constant and $E = 1.12$ eV, the band gap energy.

GigaTracker Prototype

One full column folded into a 5×9 pixel array

Produced by IBM, bump-bonded and characterized in 2010