The Associative Memory system for the FTK processor at ATLAS

Saverio Citraro – University of Pisa & INFN

lstituto Nazionale di Fisica Nucleare

11th International Conference on Large Scale Applications and Radiation Hardness of Semiconductor Detectors 3-5 July 2013, Florence

• FTK working principles

Outline

- FTK architecture, with a detailed description of the Associative Memory system
- Test of the prototypes (years 2012-2013)
 - Pattern Matching in the AM chip
 - High speed links
 - Crate cooling

An online silicon detector tracker for the ATLAS upgrade

- FTK reconstructs charged particles trajectories in the silicon detector (Pixel & SCT) at "1.5 trigger level".
- Extremely difficult task
 100KHz processing rate
 ~70 overlapping events (pile-up) at highest luminosity.

Saverio Citraro – INFN & University of Pisa

RD13 Conference-Florence 3-5 July 2013 4 July

4 July 2013 - 3/21

An online silicon detector tracker for the ATLAS upgrade

- FTK reconstructs charged particles trajectories in the silicon detector (Pixel & SCT) at "1.5 trigger level".
- Extremely difficult task
 100KHz processing rate
 ~70 overlapping events (pile-up) at highest luminosity.

"1.5 Level Trigger processor"

- Silicon data currently used only locally (ROI) and late in Level 2.
- FTK reconstructs <u>all</u> tracks with <u>PT>1 GeV/c</u> in time for Level 2.
- Track parameters are computed with full detector resolution.

Saverio Citraro – INFN & University of Pisa

RD13 Conference-Florence 3-5 July 2013

"1.5 Level Trigger processor"

Saverio Citraro – INFN & University of Pisa

RD13 Conference-Florence 3-5 July 2013

4 July 2013 - 4/21

Pattern matching & track fitting

• Pattern Bank: All the possible patterns (low resolution real track candidates) are precalculated and stored in the Pattern Bank.

Saverio Citraro – INFN & University of Pisa

RD13 Conference-Florence 3-5 July 2013 4 July 2013 - 5/21

Pattern matching

- Pattern Bank: All the possible patterns (low resolution real track candidates) are precalculated and stored in the Pattern Bank.
- Pattern matching: All the hits in each event are compared with all the patterns in the Bank and track candidates (ROADs) are found.

Saverio Citraro – INFN & University of Pisa

RD13 Conference-Florence 3-5 July 2013 4 July 2013 - 5/21

•Pattern matching

- Pattern Bank: All the possible patterns (low resolution real track candidates) are precalculated and stored in the Pattern Bank.
- Pattern matching: All the hits in each event are compared with all the patterns

in the Bank and track candidates (ROADs) are found.

• Track Fitting: Fits of the full resolution silicon HITs contained in each ROAD determine particle tracks parameters.

Saverio Citraro – INFN & University of Pisa

RD13 Conference-Florence 3-5 July 2013

4 July 2013 - 5/21

Associative Memory

AMchip

- **Custom Associative Memory**
- Base element of Pattern Bank
- 1 Pattern stored in 1 row
- Data from 8 silicon layers flow separately on 8 parallel buses (vertical lines)
- Programmable matching threshold
 - Matched patterns's addresses are read-out

•FTK architecture

Saverio Citraro – INFN & University of Pisa

RD13 Conference-Florence 3-5 July 2013

4 July 2013 - 7/21

Splitting the silicon detector in 64 η-Φ towers

- FTK is organized in 64 η - Φ towers.
- 4 η sectors times 16 Φ sectors.
- The blue and green arrows is an example of overlap coverage.

•FTK Processor Unit

- Processing Unit: 9U VME board (AMB-FTK) + large Rear card (AUX Card) + 4 little mezzanines (LAMB-FTK).
- Silicon HITs relative to events accepted by Level 1 (~100kHz) are distributed to all Amchips, this is done in parallel for the 64 tower (1 tower =128 AMChips).
- 1 HIT is compared with ~ $8x10^{6}$ of Precalculated pattern.

Saverio Citraro – INFN & University of Pisa

RD13 Conference-Florence 3-5 July 2013 4 July 2013 - 9/21

FTK Processor Unit

• Data are distributed by 12 2Gb/s serial links from Data Formatter to the Input FPGAs on the AMBoard.

• Through 4 LAMB connectors to all 64 AMchips.

Saverio Citraro – INFN & University of Pisa

RD13 Conference-Florence 3-5 July 2013 4 July 2013 - 10/21

FTK Processor Unit

Matched ROADs:

- Collected on the AMB-FTK by 2 Output FPGAs (Blue squares).
- Transmitted to the AUX Board through 16 high-speed links (2Gib/s).

Saverio Citraro – INFN & University of Pisa

RD13 Conference-Florence 3-5 July 2013 4 July 2013 - 11/21

Prototype Tests

• Test Input Links & FPGAs to correctly send HITs to AM chips.

 Test pattern matching in the AM chips (data versus simulation)

Saverio Citraro – INFN & University of Pisa

RD13 Conference-Florence 3-5 July 2013

4 July 2013 - 12/21

Test direct links: Hit input and Road Output

• Sent a known pattern of data from TX and check it in RX with Logical Analyzer.

Saverio Citraro – INFN & University of Pisa

RD13 Conference-Florence 3-5 July 2013 4 July 2013 - 13/21

• Test pattern matching: Store Pattern Bank

Step 1: Store precalculated Patterns into Associative memory chips:
Through VME the data are stored in the AM by FPGA (yellow arrows)

Saverio Citraro – INFN & University of Pisa

RD13 Conference-Florence 3-5 July 2013 4 July 2013 - 14/21

Test pattern matching: Send INPUT

- Step 2: Simulate silicon HITS Input:
 - Silicon HITS Input are loaded into the inputs FPGAs memory (red square) through VME.
 - The FPGAs transimits data to he LAMBs at full speed.

Test pattern matching: Check OUTPUT

- Step 3: Check pattern matching:
 - Collect ROADs in the Output FPGAs (blue squares)
 - Compare Hardware and Simulation output
- Test Results: Matching done was perfect

Saverio Citraro – INFN & University of Pisa

RD13 Conference-Florence 3-5 July 2013 4 July 2013 - 16/21

Cooling Tests

Expected power consumption 1 Processing unit ~ 300 W

16 PU per crate (plus SSB, CPU)

~ 5 kW per crate.

Need Cooling test!

Power supply voltages:

- 5V
- 3,3V
- 1,2V

Saverio Citraro – INFN & University of Pisa

RD13 Conference-Florence 3-5 July 2013

4 July 2013 - 17/21

Cooling Tests without chiller

- Cooling test currently in progress INFN PAVIA.
- Power consumption simulated with resistors.
- Six sensor used to measure the temperature in the crate (red circles)

Cooling Tests Result with Wiener Fan

- With the Wiener Fan we have a peak of temperature in the upper side of crate.
- The reason is the power of the fans.

RD13 Conference-Florence 3-5 July 2013 4 July 2013 - 19/21

Cooling Tests Result with CDF Fan

- With CDF Fan the temperature is lower but there is a peak in the down front side of crate.
- The reason is the missing fan.
- Cooling test are in progress: next step is to resolve the problem with fans and use the chiller.

RD13 Conference-Florence 3-5 July 2013 4 July 2013 - 20/21

- AM system test results were excellent.
- Cooling test are in progress.
- Now we are improving the system for the final version.
- June 21, 2013: ATLAS Collaboration approved the FTK Technical Design Report.
- We will install the system for the next LHC power on, in 2015.

Thank You!