
  

Marcos Fernández García, I. Vila 
IFCA-Santander (Spain)

Extraction of electric field of non-irradiated microstrip 
detectors using the edge-TCT technique

M. Gabrysch, C. Gallrapp, M. Moll, H. Neugebauer
CERN

(Work developed at the Solid State 
Detector-SSD  lab at CERN)

11th RD13 conference   Firenze 5th July 2013



  

Contents
▪ Motivation of this study

▪ Intro to TCT

▪ edge-TCT technique

▪ Methods to extract E-field with edge-TCT
1) Based on measured drift velocity
2) Based on collection time

▪ Application to real devices

▪ Comparison of the 2 methods

▪ Conclusions & Outlook
2



  

Motivation for this study
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▪ In the framework of the LHC upgrades and RD50 collaboration, we want to have 
a tool to measure the E-field profile inside a heavily irradiated microstrip 
detector. This knowledge is key to improve current designs and develop more 
radiation hard devices. The tool now exists (2010) and is called edge-TCT.

▪ Device simulation community also benefits of such tool, to validate, tune or 
discard some of the employed models. Better description of existing devices, 
more accurate predictions, better new devices.

▪ For irradiated detectors, knowledge of E-field is very helpful to calculate the 
trapping. Measurements this technique can address:
      Double Junctions

Evolution of E-field with annealing
Description of E-field for devices exhibiting multiplication
. . .



  

Transient Current Techniques
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▪ Red TCT offers a “picture” of the electric field the 
carriers “see” along the drift. However for heavily irradiated 
detectors, charge is trapped before crossing the whole 
bulk, and then we see a “cropped” picture of the field. 
Edge-TCT is a solution for that.

▪ TCT is a direct application of 
Ramo's theorem (diode):

I t  ∝ vdrift t 
1
d

vdrift t  ∝ E  z t 
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Edge-TCT technique

[1] ETCT method: G. Kramberger et al., IEE TNS, VOL. 57, NO. 4, August 2010, p. 2294 

Laser

Sensor box

→ 80 ps FWHM laser 1060 nm
→ XYZ motion
→ T controlled meas. [-20,80]C
→ In-situ annealing

• DAQ by CERN SSD 
(N. Pacifico, M. Gabrysch, I. Dolenc)

• Spatial resolution given by 
laser width (vertical, σ=8 µm). 
Measurements averaged over 
strip width (horizontal). Best on 
segmented devices

• SSD setup: 5th strip AC readout. 
Bias Ring grounded, Backside 
biased.

Setup Featuring:

• Charge carriers created at 
selected depth in the bulk

• Transient Current technique 
developed by Ljubljana group [1]. 
It allows to extract sensor 
properties (vdrift ⇒E-field, CCE) 
as a function of depth. 
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Typical edge-TCT measurement
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Vbias<Vdep

Drift Drift and diffusion
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• Note: All measurements presented in this work correspond to AC-coupled 
“baby” sensors from 2 different producers:  Micron, VTT.

• Time resolved current transients for various laser injection depths. Contribution 
from e and h can be resolved.

• Thanks to F. Manolescu & I. McGill from CERN bonding lab



  

ve  z , t≈0vh z , t≈0 =
d⋅I e , h t≈0 ; z 

A e0 N e ,h  z 

Measurement of drift velocity:

I e ,h t , z =Ae0 N e , h[exp 
−t
e , h

] ve  z ,t vh z , t 

d

• edge-TCT provides a measurement of the instantaneous “trapping-free” drift 
velocity ve+vh, for each injection position along the thickness of the detector.

• Unknowns: Ne,h and integration time (what is t~0?)  [see backup]
  Vdrift can be measured except for a constant

Trapping term (important for irradiated detectors)
Vdrift calculation allows t~0 (not possible in TCT)

A=Amplification, e
0
=elementary charge 

Ne,h=Number of injected e-h pairs
τ = trapping time,v

e,h
= drift velocity, 

d= thickness



  

▪ We propose 2 methods to calculate the “missing” proportionality factor in edge-TCT 
and thus calculate the E-field:

Total
Electrons
Holes

vdrift =
0,e E

1 0, e E

v sat , e

e


1
e

▪ Even if we know the exact drift 
velocity, we will still have:

Main difficulties extracting E-field from vdrift measurements

- Non-linear dependence of 
vdrift on E-field

- Dependence on T

- vdrift saturates at high E-
fields. In this regime it is not 
possible to calculate E-field

Method 1: Assume E-field of a strip ≡ E-field of a diode (true when far from electrodes). 
      1.1: Scales measured vdrift by diodes drift velocity at detector half-thickness.

Method 2: Uses a different “observable”, the collection time, to extract a first estimation 
of E-field, therefore a vdrift.
2.1 Go back to 1.1

E-field → vdrift      Easy
Vdrift   → E-field  Fit
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Method 1: diode approximation

2) Conditions for the field:

V bias=∫
0

w

E  z dz=∫
0

w

ab z dz ⇒ a

E(z=w)=0  ⇒  b parameter

1) Far from electrodes, E-field assumed to match diode's field: E  z =ab z

3) If we fix parameter a' in the fit, the V
bias

 condition is 

fulfilled by construction. Note that the field in the middle 
of the detector is:

E  z=
w
2
=

V bias

w

4)  Assume this field is accurate in the middle of the 
detector. Calculate the proportionally factor at z=w/2, 
and scale for other z values.
Limitation: not true if vdrift is saturated !!

k =

vdiode  z=
w
2


vmeas z=
w
2

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w =  depletion width

E  z  =
V bias

w
− 2

V bias

w2
⋅ z−

w
2


a' b'

2 = ∑
0

d

[ k×vdrift , meas−
0,e E

10,e E

v sat , e

e


1
 e


0, h E

10, h E

v sat , h

h


1
h ]
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5)  Extract E-field from fit to 
(scaled) measured vdrift



  

V > V
dep               

MCZ 320 µm, N-bulk, Vdep=130V               V < V
dep

V > V
dep              

 FZ 300 µm, P-bulk, Vdep=45 V               V < V
dep
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▪ In edge-TCT we can measure the collection time as a function of depth (t
coll

(z)). Different 

collection times at different injection depths.

Method 2: E-field from collection time

End

Start
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▪ The collection time is measured as the time 
lapse between rise edge and falling edge of 
current pulse. 

▪ The collection time can be calculated 
as the longest of the drifting times of the 
2 types of carriers:

t
collection

(z)=Max  t
e
(z) , t

h
(z)  

t e h z =∫
z

0d 
1

ve h z ' 
dz '

▪ This method does not need the measured vdrift at all. 


2
= ∑

z=0

d

[ t coll , meas z −tcollection ]
2

End=98%Q
total

ve =
0, e E

10, e E

v sat , e

e


1
e

+
n+

p+

e
h

p-bulk

-

z=0

z=d

z

E  z =a'b ' z−
w
2
;



  

Degradation of timing information due to detector RC

Simulated ideal response of a diode

RC low pass signal (C=10 pF)

C=10 pF, d=296 µm, zlaser=50 µm

▪ edge-TCT equivalent circuit behaves like an amplifying low pass filter
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N bulk
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▪ N-bulk simulation using overdepleted 
diode, no diffusion considered

▪ Below C=10 pF, the contribution of RC 
to the collection time is below 1 ns.

▪ For our detectors, measured total 
capacitances [see backup] < 3 pF. Bias 
due to RC< 1 ns.

z[µm]



  

Method 2 (collection time): fit procedure

1) Fit collection time using diode field. 
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We get:    E=E
coll

(z) [1st estimation]. 

z [mm]

E
 [

V
/µ

m
]

Measured tcoll
Fit

Border effects not modelled
Fit extends to sensor boundaries



  

Method 2” for non-irradiated detectors (cont.)

3) Fit    k×v
meas

   and extract E-field from drift veloity fit    E
vdrift

(z)

vdrift ,coll =
0,e E coll

10, e E coll

v sat , e

e


1
e

2) Calculate drift velocity for E
coll

(z): 

Scale measured drift velocity to calculated v
drift
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k =

vdrift , coll z=
w
2


vmeas z=
w
2




  

Measured and fitted collection time (VTT-Helsinki)

Blue: E
coll  

(E-field from t
coll

 fit)

Red: E
vdrift 

(E-field from v
drfitl

 fit)

Measured collection time
Collection time fit
Fit not good at sensor boundaries

Scaled v
drift

Vdrift fit, using E
coll

 as starting 

parameter
Good fit at boundaries

20130316131657_VTT_MCZN_1

MCZ 320 µm, N-bulk, Vdep=130V
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Measured and fitted collection time (Micron-P)

FZ 294 µm, P-bulk

20120802001225_Micron_FZ2328-11_NonP_3
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Magnitude of the collection 
time reproduced, but worse 
agreement than with VTT-N

~20% difference in the electric 
filed estimated from collection 
time and from vdrift

Good vdrift fit!!



  

Comparison of E-field from vdrift both methods
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MCZ 320 µm, N-bulk, Vdep=130V

tcoll

Very good agreement for V>Vdep, slightly worse for underdepleted (diffusion not simulated)

Very good agreement in both 
fits, but this is normal cause 
E(d/2) is common for both.

Constraint

20120802001225_Micron_FZ2328-11_NonP_3

V>Vdep

tcoll

vdrfit

V<Vdep

vdrift

tcoll

vdrift

Micron FZ 294 µm, P-bulk



  

Conclusions

18

▪ Edge-TCT provides information of a segmented detector across its thickness (0<z<d)
Drift velocity is measured except for a proportional factor
Proposed 2 methods to calculate this constant and to extract the E-field

 1) Assumes diode field, scales vdrift at detector half-thickness
2) Uses collection time to estimate E-field.

▪ Standard TCT measurements provide information on the detector's E-field. If trapping is 
important, edge-TCT is more suitable.

Both methods yield very similar description of the sensor. In general, 1st method is 
more suitable since it applies for any Vbias and is simpler.

Next
▪ Apply method to irradiated detectors where we have double junction near the electrodes 
and neutral bulk. First step: using parabolic E-field.

▪ Once E-field is known, calculate trapping time, possibly as a function of thickness (and/or 
field?)

▪ This study is the 1st step towards the goal of extracting E-field (and trapping) in irradiated 
detectors.

▪ The methods presented give a polynomial description of the E-field (very easy to handle 
in simulation programs)



  

BACKUP



  

Untreated edge After coarse-polishing After fine polishing

Coarse-polishing Fine-polishing

Ready for 
measurement

Strip detectorStrip detector



  

1) Number of e-h pairs N
e,h

(z) → for non-irrad detectors we can calculate it 

from the charge collected (see backup).

Uncertainties on the measured drift velocity:

vdrift  z i=
d

Ae0 N e , h

⋅
1

N 400
∑
j=0

400 ps

I t j , z i

2) BUT how is I(t~0;z) defined?? I use an average of I(t) over 400 ps:

Two unknowns:

6

I e ,h t , z =A e0 N e ,h [exp 
−t
e ,h

] ve  z ,t vh  z , t 

d

• edge-TCT provides a profile of the instantaneous “trapping-free” drift velocity 
ve+vh

ve  z , t≈0vh z , t≈0 =
d⋅I e , h t≈0 ; z 

A e0 N e ,h  z 



  

Drift velocity for different t~0 definitions

So to extract the E-field we need a method not based in v
drift

⇓

7

t<300 ps

t<500 ps
t<400 ps

t<600 ps

t<300 ps

t<500 ps
t<400 ps

t<600 ps
t<2 ns

Absolute vdrift ([a.u.]) for different 
averaging times 

Normalized vdrift ([a.u.]) for different 
averaging times 

Even if the relative information in the range [300-600] ps is the same, the 
absolute value of vdrift is different. 

Different averaging times, will lead to different absolute values of vdrift and 
therefore of E-field.



  

I(t,z)

Q  z=∫
tleft

tint

I t , zdt

“Efficiency(z)”

“Avg. drift velocity(z)”

Analysis of edge-TCT 
pulses

Micron

tinttleft

I e ,ht =A e0 N e , h[exp 
−t
e ,h

] v e  zvh z

d

vd= ∫
tleft

tleft0.4ns

I t , z dt

5

Thickness 
as 2-Erf“Charge Collection (CC)”

CC=∫
0

d

Q  z dz



  



  

Calculating vdrift normalization Method #1: Ne,h from Q(z)

vdrift known from edge-TCT up to a normalization constant.

Q  z =Ae0 N  z ∫
0

tint ve t vht 

d
dt ⇒ Q  z =A e0 N  z 

=1 depleted
<1 non-depleted, and function of (z,V)

• Ne,h pairs can be extracted from Q(z), at V>depletion: Q(z)~Ae
0
N 

• Take average of N(z): N=
1

N d
∑

0

d

N  z i 

vdrift z i=
d

Ae0 N
1

N 400
∑
j=0

400 ps

I t j , z i 

• Calculate “normalized averaged” drift velocity:
… normalized to N
… averaged for 400 ps

Normalized Averaged

Equivalent to drift velocity 
due to 1 pair e-h



  

▪ We minimize a χ2 function that depends on polynomial coefficients of the E-field

Fit of v
drift

 with border effects

▪ Laser beam has a width of ~ 8 µm. At the sensor boundaries, the beam is 
not fully inside the detector and the measured drift velocity falls to zero 
softly (no sharp edges)

vdrift c=∫
c−

c

vdrift  zG  z−c dz

9

2 = ∑
0

d

[ k×vdrift , meas−
0,e E

10,e E

v sat , e

e


1
 e


0, h E

10, h E

v sat , h

h


1
h ]
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Total
Electrons
Holes



  

Question: How much capacitance is seen by the amplifier in edge-TCT?

Micron_FZ2328-11_NonP_3 Micron_FZ2328-11_NonP_3

Cac=54 pF Cint=0.35 pF (DC)

edge-TCT: 5th strip connected to amplifier, Bias Ring is grounded, backplane biased

Micron: Ctot=0.62 pF   Cb=0.3    ; Cint=0.35  ; Cac=54 pF
VTT:     Ctot=0.48 pF   Cb=0.18  ;  Cint=1.04 ; Cac=32 pF 
Badd:   Ctot=2.254 pF

C
int

Scope

±HV

BR grounded

C
int

C
AC

C
b

C
b

C
b

C tot=
C AC C strip

C ACC strip

C strip=C b
2⋅C bC int

CbC int

Conclusion: RC smearing should not be important for depleted sensors
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N bulk P bulk

▪ Simulation using overdepleted diode, no diffusion considered
▪ Below C=10 pF, the contribution of RC to the collection time is below the experimental error. 
▪ Higher spread with electrons.

-
p+

n+

h
e

n-bulk

+

z=0

z=d

z

n+

p+

+

e
h

p-bulk

-

te>th te<th te>th

Simulated effect of RC low pass filter
Question: how much RC degrades the timing information?

te<th
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V bias − ∫
0

d

E  z dz 
2

=Vbias−k∫
0

d

 p0 p1 z p2 z2
dz 

2

If we use a polynomial for the electric field, then we cannot extract the 
vdrift normalization using only the Vbias equation, since the parameters 
would be all correlated

k is 100 % correlated to p0,p1,p2,...

Correlations in vdrift fits



  

Total
Electrons
Holes

vdrift =
0,e E

1 0, e E

v sat , e

e


1
e
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