

Overview of the ATLAS Insertable B-Layer (IBL) Project

David-Leon Pohl on behalf of the ATLAS collaboration

RD13 – 11th International Conference on Large Scale Applications and Radiation Hardness of Semiconductor Detectors

David-Leon Pohl

1

- What is IBL?:
 - Motivation
 - Sensor R&D
 - Front end FE-I4
- The production/quality assurance
 - Wafer testing
 - Module assembly/testing
 - Stave loading
- Initial production stave results

- Actual ATLAS pixel detector:
 - Essential for primary vertex/tracking/b-tagging performance
 - 3 layers of hybrid silicon pixels
 - Showed great performance over the last three years (see talk by Kerstin Lantzsch)
- Upgrades of the Large Hadron Collider (LHC):
 - \sqrt{s} : 8 TeV \rightarrow 14 TeV
 - increase of the nominal LHC luminosity of $L = 10^{34} cm^{-2} s^{-1}$ by a factor of 2-3
 - ~7% inefficiency at $L = 2 \cdot 10^{34} \text{cm}^{-2} \text{s}^{-1}$ for the B-layer

Simulated inefficiency with FE-I3 B-layer

universitätbonn Insertable B-Layer: IBL

- A new 4th layer for the ATLAS pixel detector at r = 3.2 cm
- Recover eventual failure of the actual B-layer
- New beam pipe with smaller radius (r = 23.5 mm) gives space for new layer
- 14 staves with tilt angle of $\Phi = 14^{\circ}$ and no overlap in z
- Total radiation length < 1.9% X/X_0 :
 - Staves with carbon foam composite material
 - CO₂ cooling
- Higher track density due to smaller radius (50%) and higher luminosity:
 - Radiation hardness: 5 · 10¹⁵n_{eq} / cm² NIEL, 250 MRad total ionizing dose
 - New sensor technologies investigated (3D-silicon, slim edge)
 - New pixel readout chip needed (FE-I4)

universitätbonn

Main Requirements:

two sensor types chosen

- Operational up to $5 \cdot 10^{15} n_{eq}/cm^2$ NIEL
- Slim edges

Planar n-in n sensor

- Electrode on top / bottom of the bulk
- Vendor: CiS
- Proven technology with high yield (90% accepted for IBL)
- Depletion voltage 35 V
- 1000 V at $5\cdot 10^{15}n_{eq}$ / cm^2
- 200 µm thickness
- 75% IBL

cutting

edge

3D silicon sensor

- Columns edged into the bulk
- Double sided, 2 E electrode configuration
- 2 Vendors: FBK/CNM
- Yield: 60% accepted for IBL
- Depletion voltage 15 V
- 180 V at $5\cdot 10^{15}n_{eq}$ / cm^2
- 230 µm thickness
- 25% IBL

RD13 - 2013

David-Leon Pohl

p⁺ Si

Universitätbonn Sensor characteristics (JINST 7 (2012) P11010)

RD13 - 2013

David-Leon Pohl

universitätbonn Sensor in-pixel efficiency (JINST 7 (2012) P11010)

0.94

0.92

0.9

88.0

0.86

0.84

0.82

0.8

- Irradiated to $5\cdot 10^{15}~~n_{eq}$ / cm^2
- Inefficiency at columns (not sensitive areas)
- Overall efficiency 97.5 % (99 %) at 0° (15 °)
- 15° corresponds to the IBL design

RD13 - 2013

universitätbonn FE-I4 pixel read out chip

David-Leon Pohl

- $\sim 2 \times 2 \text{ cm}^2 \rightarrow \sim 6 \text{ times size of FE-I3}$
- 26.880 pixels with 50 μm x 250 μm size
- Hits buffering in four pixel regions
- Built in low drop out regulators (LDO) and bandgap voltage references
- > 250 MRad TID (750 MRad working!)
- Charge determination and time stamping with time over threshold technique (4-bit ToT, 40 MHz input clock)
- Tuned threshold dispersion ~ 40 e

RD13 - 2013

universitätbonn Modules of the IBL

IZM (Berlin):

- bump-bonding of FE and sensor
- thinning of the FE-I4 wafer to 150 µm with glass handling wafer and dicing

Double chip module prototype

At Bonn/Genova:

• Module assembly and QA

David-Leon Pohl

RD13 - 2013

universitätbonn IBL stave

universitätbonn FE-I4B wafer testing

 Λ

• IBL requires: $14 \cdot 32 \cdot 2 \cdot 125\% = 1120$ green ICs $\equiv 38$ wafers

 \leftarrow

staves ICs/stave safety margin 100% planar pessimistic yield estimation of 25% 3D 50% green ICs (=30) per wafer

• 60 chips on 8 inch wafer

1

 Λ

 All needed wafers were tested in Bonn and are already sent to IZM

R

- Contacting > 100 pads per FE with needle card
- 2 days measurement time per wafer
- cuts on > 18000 values per wafer with automated software ,WaferAnalysis'

Chip calibrations (only possible at wafer level)	Global IC tests	Pixel array tests
 Reference current tuning Internal pulser calibration: Pulser DAC transfer function Injection capacitance measurement 15-bit serial number burning for module identification 	 Current consumption (in different chip states) Global register test Tunable/fixed regulator reference voltages Service records Scan chain tests Injection delay scan of internal pulser 	 Pixel register test Digital test Analog test with different injection caps Threshold scan etc.

FE-I4B wafer testing results

- Injection capacitance: (6.1 ± 0.3) fF
- Simulated value: 5.7 fF
- Value to be used at IBL operation
- Used for biasing the analog part
- Design value of 2 µA can be reached with small error (< 25 nA)
- Expected noise (~ 120 e ENC) of bare chip measured

David-Leon Pohl

FE-I4B wafer testing: yield and main failures

- Final yield: 61.0% green (for IBL), 30.5% yellow, 8.5% red
- Main failures:

universitätbonn Module qualification procedure

- 1. Assembly tests at 15 °C:
 - Quickly identify non working modules
 - Set reference current via pulling wire bonds
 - Regulator tuning
 - Identify merged / disconnected bumps:
 - Cross talk test
 - Threshold scan with/without biased sensor
- 2. Stress test (Burn in):
 - 10 x thermal cycling -40..40° C
- 3. Qualification tests at -20 °C:
 - Pixel register test
 - IV curve
 - Analog / digital functionality
 - Low threshold configuration (1500 e)
 - Source scan
- 4. Module ranking based on # broken channels:
 - < 270 pixels / chip \rightarrow accepted (<1% of all channels)
 - > 270 pixels / chip \rightarrow disqualified for IBL

Voltage regulator sense pads

1 'double chip module with voltage sense needle card

Setup for 4 SC and 4 DC modules

RD13 - 2013

David-Leon Pohl

universitätbonn Module yield and status

	Single chip modules (SC)					Double chip modules (DC)						
Production Batch	B1	B2	B 3	B4	B5	total	B1	B2	B3	B4	B5	total
Built	18	16	37	14	15	100	26	48	50	11	30	165
Accepted for IBL	3 17%	7 44%	18 49%	14 100%	10 67%	52 52%	7 27%	17 35%	41 82%	9 82%	24 80%	98 59%
Handling/ packaging	0	0	1	0	0	1	1	3	1	2	5	12
IV sensor	3	1	8	0	3	15	2	0	1	0	1	4
Low voltage/ data	0	2	0	0	0	2	1	0	0	2	1	4
Regulators	2	0	0	0	0	2	3	1	0	0	0	4
Bump bonding	10	6	9	0	2	27	12	27	6	0	0	45

- Bumb bonding failure rate decreased significantly after batch 3
- Batch 4ff: yield > 80% for single/double chip modules
- B1 to B5: almost all modules assembled and tested
- Estimated total number of modules built from batch 5 on: ~200 SC and ~240 DC
- At the actual testing rate the module production is finished by September

universitätbonn Stave loading procedure

Stave loading at Geneva university

Production Stave QA at CERN

Α

Be the b

Test stand for 2 staves

David-Leon Pohl

С

RD13 - 2013

Readout

and

powering

CO₂

cooling

universitätbonn Results from first production stave

- 99.815 % operational pixels
- noise as expected (higher for 3d sensors)
- uniform threshold

Source scan of first stave

Sr-90 source scan

universität**bonn**

- 12 h source scan with beta source (Sr-90)
- Less hits in one FE understood: not masked noisy pixels + FE self trigger mode
- Peaks from sensors edges: more sensitive area/pixel

- IBL is the new innermost layer of the ATLAS pixel detector
- New readout chip FE-I4 working well and fully tested for IBL with reasonable yield (61%)
- Planar n-in n and first time 3D silicon sensors are used
- Module production and stave tests currently ongoing
- Promising results of the first stave shown, by now already 4 production staves built and tested

Outlook

- Finish module testing in September
- Stave loading and testing until November
- Integration into existing pixel detector in April 2014