

The Phase-1 upgrade of the CMS silicon pixel detector

Mauro Menichelli For the CMS collaboration

INFN Perugia

- The need for a phase-1 upgraded pixel detector
- The design of the new pixel detector
- The italian consortium for the production of the third layer of the detector

Why we will need a new pixel detector in 2017?

- Radiation damage:
 - o We will reach by that date the radiation fluence of 1.2×10^{15} neq/cm² in the first layer when the detector will deteriorate its position resolution by a factor 2
- Keeping the pace of the LHC new performances
 - $_{\rm 0}$ Present tracker was designed for 1 x 10^{34} Hz/cm^2 (25 ns bunch crossing) luminosity
 - o Future performances after LS2 will be 2×10^{34} Hz/cm² (25 ns or 50 ns bunch crossing) luminosity
 - At the target luminosity pileup will reach a value of 50 (or even 100 for 50 ns b.c.) an increase in efficiency and a reduction of fake rates is needed

Luminosity forecast

Ultimate luminosity Luminosity 1000.0 Integrated - 'baseline'----Integrated - ultimate 4.0E+34 Integrated luminosity [fb⁻¹] Peak luminosity [cm⁻²s⁻¹] 3.5E+34 100.0 3.0E+34 2.5E+34 10.0 S1 S2 2.0E+34 1.5E+34 1.0 1.0E+34 5.0E+33 0.0E+00 0.1 2014 2012 2016 2019 2020 2017 2018 2010 2011 2013 2015 2021

Year

Istituto Nazionale di Fisica Nucleare Sezione di Perugia

Radiation damage

Data loss performance comparison

Detector	Radius	% Data loss for $(cm^{-2}s^{-1} @ ns)$					
	(cm)	1×10^{34} @ 25	2×10^{34} @ 25	2×10^{34} @ 50			
Current detector							
BPIX1	4.4	4.0	16.0	50.0			
BPIX2	7.3	1.5	5.8	18.2			
BPIX3	10.2	0.7	3.0	9.3			
FPIX1 and 2		0.7	3.0	9.3			
Upgrade detector							
BPIX1	3.0	1.19	2.38	4.76			
BPIX2	6.8	0.23	0.46	0.93			
BPIX3	10.2	0.09	0.18	0.36			
BPIX4	16.0	0.04	0.08	0.17			
FPIX1-3		0.09	0.18	0.36			

Material budget reduction

Tracking efficiency and fake rate in Fin Istituto Nazionale (definitions)

Tracking efficiency	=	Number of truth tracks matched to reconstructed tracks	
		Number of truth tracks	
Track fake rate	e =	Number of reconstructed tracks not matched to truth tracks	
Hack lake late		Number of reconstructed tracks	

CMS

Tracking efficiency and fake rate (t tbar)

CMS

Tracking efficiency and fake rate (2 muons)

Structure of the new detector (Fpixel Istituto Nazionale di Fisica Nucleare and Bpix)

Bpix structure and modularity

	layer	radius	facets	modules
ſ	4	160 mm	64	512
	3	109 mm	44	352
	2	68 mm	28	224
	1	30 mm	12	96
	(1•)	(39 mm)	(16)	(128)
				1184

Carbon fiber structure

INFN Istituto Nazionale

di Fisica Nucleare Sezione di Perugia

Detector+ FE modules

The Sensor

- 16.2 x 64.8 mm² lateral dimensions 285±5 µm thickness
- Pixel size: 100 x 150 µm² (66560 pixels)
- Substrate: Diffusion oxigenated float zone (n-doped)
 3.7 kΩcm resistivity (fully depleted at 55 V)

The digital ROC

- No modification in the technology (250 nm)
- Few modifications in the analog part
- Main modifications in the digital part

Performance comparison between the old analog and the new digital ROC

	PSI46V2	PSI46DIG
ROC size	7.9 mm x 9.8 mm	7.9 mm x 10.2 mm
Pixel size	100 μm x 150 μm	100 μm x 150 μm
Smallest radius	4.3cm	2.9cm
Settable DACs / registers	26 / 2	19 / 2
Power Up condition	not defined	default values
pixel charge readout	analog	digitized, 8bit
Readout speed	40 MHz	160 Mbit/s
Time stamp Buffer size	12	24
Data Buffer size	32	80
Output Buffer FIFO	no	yes
Double column Speed	20 MHz	20 MHz
-		(40 MHz)
Metal layers	5	6
Leakage current compensation	yes	no
in-time threshold	3500 e	< 2000 e
PLL	no	yes
Data loss at max Operating flux	\sim 3.8% at 120 MHz/cm ²	1.6% at 150 MHz/cm ² (~3% at 580 MHz/cm ²)

Additional new features of the phase-1 upgraded pixel detector

New TBM

- New CO₂ cooling system
- New power distribution system
- New optohybrid

The production schedule

20

The italian consortium

INFN Istituto Nazionale di Fisica Nucleare Sezione di Perugia

Activities in Pisa

- Pixel sensor on wafer test.
- Diced sensors and test bare module electrical test
- Shear and pull test of Bump Bonded chip

Activities in Padova

Electrical test of ROC

Activities in Catania

- Quality test of "bare" HDI
- TBM bonding on HDI
- Cable assembly of HDI
- Final electrical test of HDI
- Production of transportation boxes

Acivities in Bari

- Assembly of HDI with bare module
- Preliminar test

Activities in Perugia (preliminar test and thermal cycling)

Activities in Perugia (X-ray calibration)

Spare slides

Layout of layer 1

Structure extra

Analog part of the digital ROC UNFN Istituto Nazionale di Fisica Nucleare Sezione di Perugia

