

The upgrade of the ALICE Inner Tracking System

S.Beolè Università di Torino & INFN on behalf of the ALICE Collaboration

11th International Conference on Large Scale Applications and Radiation Hardness of Semiconductor Detectors3-5 July, Florence, Italy

Motivations for the ALICE upgrade

- Why: improve the physics performance for
 - Heavy flavor at low p_T
 - Quarkonia
 - Low-mass di-leptons
 - Heavy nuclear states
- How:
 - Improve impact parameter resolution
 - Higher LHC luminosity: 6x10²⁷ cm⁻²s⁻¹ -> 50 kHz minimum bias Pb-Pb interactions
- What:

– New beampipe, TPC and ITS, all readout electronics, etc...

ITS Upgrade features

Good spatial resolution: improve secondary vertex resolution by factor ALICE
 ≈3 (5) in rφ (z):

 D^0

Sketch of the ITS upgrade with half a Pb-Pb event superimposed

- smaller beam pipe (R = 1.9 cm)
- inner layer as close as possible (R = 2.2 cm)
- more layers
- less material budget
 - thin sensors (goal: 0.3-8 % X₀/layer)
 - thinner beam pipe ($\Delta R = 800 \mu m$)
- smaller pixel size:
 - monolithic pixels (20μm x 20μm)
- Radiation level:

- high standalone efficiency and p_T resolution
- fast readout:
 - − 500 Hz \rightarrow 50 kHz in Pb-Pb
 - ~ 200 kHz in pp
- fast removal/insertion to ease possible yearly maintenance July 4, 2013 RD13 – S. Beolè

Expected improvements of the detector performance:

ALICE

- 3 x better pointing resolution
- 2 x better standalone tracking efficiency at low p_T
- 2.5 x better standalone momentum resolution

Conceptual detector layout:

Layer	Туре	R [cm]	±z [cm]	Intrinsic resolution [µm]		Material budget
				rф	Z	[% X ₀]
	Beam pipe	2.0	-	-	-	0.22
0	Pixel	2.2	11.2	4	4	0.3
1		2.8	12.1	4	4	0.3
2		3.6	13.4	4	4	0.3
3	Pixel	20.0	39.0	4	4	0.8
4		22.0	41.8	4	4	0.8
5		41.0	71.2	4	4	0.8
6		43.0	74.3	4	4	0.8

Inner barrel

Inner Barrel (IB): 3 layers pixels

Radial position (mm): 22,28,36

Length in z (mm): 270

Nr. of staves: 12 + 16 + 20 = 48

Nr. of chips/stave: 9

Pixel size: ~ 20 µm x 20 (30) µm

Material thickness: ~ 0.3% X₀

Each module consists of a hybrid integrated circuit, i.e. a number of pixel chips (e.g. 2 x N) bonded on a flexible printed circuit, which might be glued on a carbon ply

Half-Stave

Each half-stave will consists of a number of modules glued on a common cold plate

Outer Barrel (OB): 4 layers pixels Radial position (mm): 200, 220, 410, 430 Length in z (mm): 843, 1475 Nr. of staves: 48, 52, 96, 102 Nr. of chips/stave: 56, 56, 98, 98 Nr. of chips/layer: 2688, 2912, 9408, 9996 Material thickness: ~ 0.8% X₀

Space frame & cooling

- Inner barrel:
 - Embedded kapton pipes
 - Polymide microchannels
 - Silicon microchannel
- Outer barrel:
 - Embedded kapton pipes

Outer barrel stave LAYER 5,6 length 1526mm. Weight 33,6g

LAYER3,4 length 900mm. Weight 18g

Overall material budget per layer X/X₀: SPD ~1.14% \Rightarrow ~ 0.3%

Outer barrel stave and module

Overall material budget per layer X/X_0 : ~ 0.8 %

Design in progress

Module: 2xN
 pixel chips

- FPC
- Cooling
- Assembly procedure

Pixel chip technology R&D

New specialty CMOS technologies available for monolithic pixel detectors.

Development of monolithic detectors using

- Tower/Jazz 0.18 µm CMOS technology:
 - Improved TID resistance due to smaller technology node
 - Available with high resistivity $(1-5k \Omega \cdot cm)$ epitaxial layer up to 40 μ m (substantial depletion at 1-2V)
 - Special quadruple-well available to shield PMOS transistors (allows in-pixel truly CMOS circuitry)

Pixel chip architecture

- MIMOSA (IPHC Strasbourg) baseline (most mature and advanced)
 - Rolling shutter with in-pixel CDS, column-level discriminator, 2 rows parallel RO
 - Integration time: 30 μs
 - Power \leq 400 mW/cm² (ANALOG+DIGITAL)
- CHERWELL: Parallel Rolling Shutter (RAL)
 - Based on previous development.
 - Integration time: ~40 μs
 - Power < 200 mW/cm²
- EXPLORER: In-pixel discriminator + data driven readout (CERN)
 - shaping time ~2 μs, readout time ~4 μs; <
 - Power ~100 mW / cm² (ANALOG ONLY)
- SENSOR OPTIONS
 - collection electrode geometry
 - pixel dimensions/shape etc...
- READ-OUT OPTIONS
 - Priority encoder
 - Orthopix
 - Parallel rolling shutter
 -

Engineering run march 2013

- High resistivity wafers procurement
 - Nominal resistivity (30; >1k; >2k Ω cm)
 - Different epitaxial layer thickness (12-40 μ m)
- Complex dicing scheme, 26 dices per reticle:
 - Pixel matrices with:
 - Different architectures (IPHC-CERN-RAL)
 - Different anode shapes and dimensions
 - Different read-out options
 - Resistivity measurements test structures
 - Data transmission logic blocks
- Wafers delivered June 12th
 - Sent to company for thinning and dicing
 - Ready for tests

Thinning @ 50 µm and dicing

Work with commercial supplier to thin wafers to 50 μ m assuming chip size of 15 mm x 30 mm

- Thinning and dicing of blank 200 mm wafers (13) - 2012
- Thinning and dicing of patterned 200 mm wafers (pads for interconnection tests) - 5 wafers - 2012
- Thinning and dicing of one MIMOSA20 wafer (die size 10 mm x 20 mm) – completed

Metrology tests confirm thickness within expectations: $50 \pm 5 \,\mu m$

> IR measurement does not take into account metal and inter-metal layers; there are 6 metal-layers corresponding to $\sim 10 \mu m$ offset

Test beams (1)

RD13 – S. Beolè

• Test Beams:

CERN PS - December 2012

Explorer chip: 4 chips forming a selfcontained telescope at PS

Test beams (2)

- Test Beams:
 - DESY March 2013
 - DESY June 2013
 - DESY July 2013

Goals:

- Verification of MC model for inclined tracks
- Characterization of irradiated samples

July 4, 2013

Preliminary results on Explorer-0

Charge collection efficiency measured with Fe⁵⁵ source

- CCE is calculated as the ratio between the MPV of the charge collected in a cluster divided by the single pixel collection peak peak value
- CCE measured for
 - different pixel size
 - different V_{bias} values (-1; -6 V)
 - with and without threshold on the seed surrounding pixels

Very good (>98%) charge collection (-> detection) efficiency for pixel size ~ 20μ mx 20μ m

Radiation Damage tests

Chip	Period	Facility	Radiation type	Results	
TJ180_TID	August 2012/ February 2013	CERN	10 KeV X-Ray (TID < 10 Mrad)	Study of the CMOS Threshold shift and leakage current => adequate tolerance for ALICE ITS	
TJ180_SEU	April 2013/ May 2013	NPI Prague	Proton beam (28 MeV, 35 MeV)	SEU Cross section (per bit): 10 ⁻¹³ cm ² (Very preliminary results) => adequate tolerance for ALICE ITS	
Explorer0	December 2012	CERN	PS, Line T10	No radiation damage studies. Tracking efficiency with 5 GeV/c pions: ~ 100% tracking efficiency at 5σ threshold.	
Explorer0	March 2013	DESY	Electron beam	(First result on non ionizing radiation damage 10 ¹³ n _{eq}) Evaluation of the Noise (+8%) and Signal to Noise (-13%)	
Explorer0	17 June 2013 -> 25 June 2013	DESY			
Explorer0	22 July 2013 -> 04 August 2013	DESY			

Very preliminary results on Explorer-0 and test structures Beam test data analysis ongoing

Architecture qualification

- Dedicated test system developed in the framework of the chip design
 - Hybrid board to allocate DUT, custom for each chip.
 - Developed by UK (Cherwell) and CERN (Explorer-1 & Priority encoder)
 - Ready to bond first dices from engineering run
 - Proximity board, common to all chips.
 - Designed by Padua, production and assembly to be done at CERN. First version equipped with components
 - Under test NOW
 - DAQ system, common to all chips.
 - Use of "Scalable read-out system" (SRS) developed at CERN.
- Test campaign
 - Fe55
 - Laser tests
 - Beam tests @ Desy (July-August)

first results expected within the end of July

Engineering run end of 2013: large scale demonstrator

- Based on the priority encoder & front end circuit already submitted in the previous engineering run
 - 32 regions of 32 columns each, 512 pixels per column (28 μm x 28 μm) ≈ 29 mm x 15 mm Pixel sub-matrix: 0 → 31

System aspects

- Very large chip: optimization of architectural aspects in pixel matrix and digital circuitry/data transmission
 - constraints on digital circuitry due to timing/area
 - power consumption (0.3-0.5 W/cm² power budget is upper limit)
 - Operation with realistic trigger rate and detector occupancy: data compression, multi-event buffer
 - Serializer
 - Effects of the connection pads
- Production Yield
- Chips used to produce working modules for inner and outer barrel

Flex Printed Circuit

• Bus cable:

– Al + polyimide + Al

- Chip-On-Flex connections:
 - Au-stud
 - Laser soldering

Soldering techniques

Laser soldering:

- First validation of the technique by soldering kapton-kapton assemblies
- Solder 50 µm silicon die to polyimide foil representing the module PCB
- Tests ongoing with different solder ball sizes

Au-stud:

First dummy module produced using silicon chips (50 um) and a polyimide PCB (27 cm long, 9 chips)

- Au stud bonding using 80 um diameter stud on chip (100 contacts per chip, 400 um diameter pads)
- Bus connected using conductive glue drop (glue polymerized at 80°C)
- Further optimization of the bus layout and study of the polymerization temperature needed

Timeline

- 2012–2014 R&D
 - 2012 evaluation of technologies & prototypes
 - 2013 selection of technologies, eng. Design, TDR
 2014 final design and validation
- 2015-18 Construction and Installation
 - 2015-16 production, construction and test of detector modules
 - 2017 assembly and pre-commissioning
 - 2018 installation in the cavern

Summary

The ALICE Inner Tracking System Upgrade will allow to address new physics topics like:

- Quark mass dependence of in-medium energy loss
- Thermalization of heavy quarks in the medium
- Heavy nuclear states production

New Tracker composed of 7 silicon layers characterized by:

- Impact parameter resolution improved by factor 3x
- First detecting layer @22 mm from the beam line
- Material budget $x/X_0 \approx 0.3$ % in the first layers
- High tracking efficiency down to low p_T (> 95% for pt > 200 MeV/c)
- Fast access for maintenance

Detector technology evaluation ongoing - to be installed during LS2