Single Electron Interference and Diffraction Experiments with a High Energy Physics Detector

G.L. Alberghi^(1,2), S. Frabboni⁽³⁾, A. Gabrielli^(1,2), G.C. Gazzadi⁽³⁾
F. Giorgi⁽¹⁾, G. Matteucci⁽²⁾, G. Pozzi⁽²⁾,
N. Semprini^(1,2), M. Villa^(1,2), A. Zoccoli^(1,2)

- (1) Istituto Nazionale di Fisica Nucleare, Sez. Bologna
- (2) Physics Department Università di Bologna
- (3) CNR-Institute of Nanoscience-S3 and University of Modena and Reggio Emilia

Outline

- Young's Experience
- Instrumentation:

Transmission Electronic Microscope Nanometric Double Slit Apsel 4D Sensor Data Acquisition System -> HW + FW + SW

- Preliminary Tests
- Single Electron Interference
- Conclusion

Young's Experience

 $\lambda_{\text{De Broglie}} = h/p$

Basics

- Monochromatic/Monoenergetic coherent source

λ.

$$P(x) = |\psi_1 + \psi_2|^2 = |\psi_1|^2 + |\psi_2|^2 + 2\operatorname{Re}\psi_1^*\psi_2$$

R. Feynmann: - Lecture on Physics, Vol 3

Young's experiment with the electrons can only be conceptual in nature because of the smallness of the de **Broglie wavelength**

The Experimental Setup

- Instrumentation
 - Transmission Electron Microscope (TEM)
 - Nanometric Double Slit
 - APSEL 4D : High Space-Time Resolution Sensor
 - Data Acquisition System

The Microscope and the Setup

TEM Philips EM400T (120 keV max) 40 keV , v=0.4 c , λ=h/p= 5.9 pm

S

C

Ι

P

PO

S - Small size source

C - Sample with two slits

I,P - Image and projection lenses

PO: projection plane

5

Experimental conditions: plane wave approximation (Fraunhofer regime)

The Double Slit

The Sensor : APSEL 4D

- Vertex detector for High Energy Physics
- ST 130nm CMOS Technology
- 4096 Monolithic Active Pixel Matrix
- Optimized for charged particle identification
- Each Pixel has Digital Output Hit / No Hit Position Time Stamp

x,y: spatial resolution 15 μm t: max time resolution 0.4 μs

Clock frequency: up to 20-50 MHz

Squared Pixels 50 x 50 µm Sensitive Area : 6.4 mm x 1.6 mm

DAQ : Hardware

- Real Time Data Acquisition
- Sensor-> Board -> FPGA -> USB -> Computer
- Micrometric Bidimensional Movimentation

Chip-FPGA logic level conversion

Hardware

Connections and Movimentation

Chip placement inside TEM

The Programmable Board

- VHDL Code
 - Chip Configuration and Control
 - Data Reception, Elaboration, Formatting and Transmission to PC
 - Clock Management
 - Fast clock for Electronics
 - Slow control clock for Chip Configuration
 - Time Counter clock for the Sensor

Software

Graphic Interface for Chip control and Data Acquisiton

Controls and Configuratio	n Configuration Pixel Matrix	Monitoring
Input Configuration		Write
Output Directory		Read
Current Status		Button 3
State Machine	DAQ Monitoring	
Config Xilinx	FSM Status:	
Config APSEL	Hit Rate :	
Start DAQ	Storage Rate (kb/s) :	
Start Storing	Commento Pre	Commento Post
Stop Storing		
Stop DAQ		

- C++ code
- Qt widget-based graphical libraries
- Qwt libraries for graphical visualization of events and histograms

```
← Standard user interface
```

Software

Single Registers

Pixel Configuration Interface

Controls and Configuration	Configuration	Pixel Matrix	Monitoring	Debug RW	Debug RO	monitor online Gigiqwt	Time Rate Histogram Gigiqwt	Pres
Derictri Dead-Write								Contro
Registinedu inite	Deed		141-74-					
	Kead		write					
RW (0) ; RWReg(0)(2): HitGenEnable				Hex	Hex 📃	Read	Write	
RW (1): ClkToUseReg				Hex	Hex	Read	Write	
RW (2): ConfigReg				Hex	Hex	Read	Write	6
RW (3) : BCODelays				Hex	Hex	Read	Write	5
RW (4) : DACRegister				Hex	Hex	Read	Write	3
RW (5) : ApselCommnd				Hex	Hex	Read	Write	1
RW (6) : DataToAPSEL[0]				Hex	Hex	Read	Write	0
RW (7) : DataToAPSEL[1]				Hex	Hex	Read	Write	Disabled
RW (8) : SC_dk_div				Hex	Hex	Read	Write	Rows
RW (9) : BC_offset				Hex	Hex	Read	Write	
RW (10) : BCOHalfPeriod Per BCO clock Manager				Hex	Hex	Read	Write	P
RW (11) : Config Hit Gen Per hit generator				Hex	Hex	Read	Write	P
								P
irigger								
Reset :TrigIn0(0)	Reset	S	etDAC : TrigIn0(2)	setD	AC			
SetCMD : TrigIn0(1)	setCMD	D	AQstart : TrigIn0(3) DAQS	tart			
								-

trols a	nd Con	figurat	ion	Config	uration	Pixel	Matrix	Monitori	ng						
							Macro	o Pixe	l Mat	rix	٨	Nac	ro	Pi	xels
	31-28	1	27-2	4	23	-20	19-16		15-12	11-8		7-4	0-3		
						VV							~~	✓ 7 ✓ 6	MacroPixel Read
4														v 0 v 4	MacroPixel Write
													>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	▼ 3 ▼ 2 ▼ 1	
oled E	31-28		27-2	•	23	-20	19-16		15-12			74 3000	3-0		Rows
si	ingle P	ixel Ma	ask	Ro	w Co	lumn	Row	Column		Row Colu	mo	Row O	olumn		
Pix 1	ROW	Colur	Ptx	5		Pix			Pix 13		Pix 1	7			Sinale
Pix 2	T		Ptx	6	T	Ptx	10		Pix 14		Pα 1	8			
Pix 3	T		Pix	7		Pix	11		οiα 15		Pix 1	9	1		rixeis
			Pix	8	70	Pix	12		Pix 16		Pix 2	0			

Setup Test : Imaging

Images of Single and Triple Slit on the sensor

Single Slit

Triple Slit

32 x 128 Pixel Matrix ¹⁵

32 x 128 Pixel Matrix

Carbon Grating Diffraction

Carbon diffraction grating: typical pitch 400 nm 40-60 keV electrons: $\lambda = h/p = 5-6$ pm, typical angle 10⁻⁵ rad Observation windows: 165 µs (6k fps)

Carbon Grating Diffraction

Very High Statistic ~ 10 Million Hits

Single-electron interference I

Double slit: distance d = 440 nm 40 keV electrons: $\lambda = h/p = 5.9 \text{ pm}$ Observation windows : 165 µs (6k fps)

Single-electron interference II

Double slit: distance d=440 nm 40 keV electrons: $\lambda = h/p = 5.9 \text{ pm}$ Observation windows 165 µs (6k fps) Add Frames

Statistica accumulata: 500

Single-electron interference III

Conclusion

- We used for the first time a system of nanometric-slits with a high space-time performance sensor
- APSEL 4D (4096 pixels, 6k fps→2M fps) developed by INFN via a R&D project oriented to the next generation of silicon trackers (SLIM5).
- Developed a custom Hardware-Firmware-Software full DAQ chain
- **Reconstructed** the Young interference with single electrons
- The DAQ chain can be used for Chip and Electronics Characterization
- The time resolution characteristics can be used in a new field of electron microscopy: the study of dynamic phenomena.

Deep NWell MAPS design

- CMOS MAPS for future vertex detectors: thin (OK!) but also need to be fast (i.e. bkgd rate @ SuperB: several MHz/cm2)
- New approach: hybrid-pixel-like structure to improve the readout speed
- <u>Full in-pixel signal processing chain</u> exploiting triple well CMOS process
 - Deep NWell as collecting electrode with most of the front-end overalapped in the pwell
 - Can extend collecting electrode (charge preamp --> gain independent of sensor cap.)
 - Allow design with small <u>"competitive"</u> <u>nwells</u> for PMOS inside the pixel. Area kept to a minimum:, they steel signal to the main DNW electrode.
 - Fill factor = DNW/total n-well area
 ~90% in present design

MAPS efficiency vs position within pixel

Correspondence between the pixel layout and the efficiency map.

Efficiency map inside pixel cell. Cross feed unfolded results.

Instrumentation

- TEM Philips M400T (120 keV max)
- Two nanometric slits
- slit width 95 nm
- Slit length 1550 nm
- Slit distance 440 nm
- 4096 MAPs Sensor
 ST 130nm CMOS _____

DAQ system

Set-up inside the TEM

S- Sma C - Sar C I,P - In pr I PO: pro P Experi

PO

- S- Small size source
- C Sample with two slits
- I,P Image and projection lenses
- PO: projection plane
- P Experimental conditions:
 Fraunhofer regime
 (plane wave
 approximation)

Set-up nel Microscopio

- S- Sorgente di piccole dimensioni Elettroni da 40 keV , v=0.4 c λ =h/p= 5.9 pm (1/18 diametro H),
- C Campione a due fenditure distanza d=440 nm
- I, P Lenti immagine e di proiezione
- PO: piano di proiezione delle fenditure

Condizioni sperimentali: Regime di Fraunhofer (approssimazione di onde piane)

APSEL 4D Sensor

Sviluppato dalla Collaborazione SLIM5 per un progetto per esperimenti di fisica delle particelle-> Rivelatore di vertice di SuperB (INFN: BG, BO, PI, PV, TS)

Sensore Monolitico a Pixel Attivi Tecnologia CMOS ST 130 nm

Architettura di readout integrata, ottimizzata per il tracciamento di particelle cariche

Informazione di uscita 3D: x,y: risoluzione spaziale 15 μm t: risoluzione temporale > 0.4 μs

Frequenza di clock: 20-50 MHz

Pixels quadrati di lato 50 μ m Area sensibile: 6.4 mm x 1.6 mm = 10 mm²

Data Acquisition

- Real Time Data Acquisition
- Sensor-> FPGA -> USB -> Computer
- Micrometric Bidimensional Movimentation

Pixel Configuration Interface

						м	acro	Pix	el M	latri	x							
	31-	28	27-24		23-20		19-16		15-12	2	11-0	1	7-4		0-3			
7		~										~				7	M	acroPixel Read
5 4																5	M	acroPixel Write
3																13		
2		~~			~							~~			~~~	2		
0		~~														0		
bled E	31-	»	27-24		23-20		19-16		15-12	2	11-0		7-4		3-0	Rov	NS	MPx 00
Si	ngle	Pixel N	task															
	Rov	Col	umn	Row	Colum	10 - C	Row	Column	Ċ.	Ro	w Cok	imn	Ro	w Co	lumn			
Pix 1	-		Ptx 5			Pix 9			Pix 1	3		Pi	x 17					
Ptx 2	1	11	Ptx 6			Ptx 10			Pix 1	4		Pr	× 19	11	Si	nal	e Pi	xels
Pix 3	-] [Pix 7			Pix 11			Pix 1	5		Pi	× 19					
Pix 4	-		Pix 8			Pix 12			Pbt 1	6		Pi	× 20					

Thin wire Diffraction

40-60 keV electrons: $\lambda = h/p = 5,9 \text{ pm}$, typical angle 10^{-5} rad Average Hits per frame ~ 1 -> Single Electron

Calibration : Carbon Grating Diffraction

Carbon Grating Diffraction: typical step 400 nm 40 keV Electrons : λ =h/p= 5,9 pm, angles \approx 10⁻⁵ rad

3 millisecond observation windows

The single-electron interference III

The single-electron interference IV

