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Outline 

• Young's Experience 
 

• Instrumentation:  
 Transmission Electronic Microscope   
 Nanometric Double Slit  
 Apsel 4D Sensor 
 Data Acquisition System -> HW + FW + SW 
 
• Preliminary Tests  

 
• Single Electron Interference 

 
• Conclusion 
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Young’s Experience 

Basics 

– Monochromatic/Monoenergetic coherent source   

                   De Broglie  = h/p 
– Two slits at a distance d create secondary coherent waves  

– Screen at a distance D >> d  : Interference Pattern 

R. Feynmann: - Lecture on Physics, Vol 3 
 
Young's experiment with the electrons 

can only be conceptual in nature 

because of the smallness of the de 

Broglie wavelength 
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The Experimental Setup 

• Instrumentation 
 

– Transmission Electron Microscope (TEM) 

– Nanometric Double Slit 

– APSEL 4D : High Space-Time Resolution Sensor  

– Data Acquisition System 
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32x128 pix - 50 mm pitch 

periph & spars logic 



The Microscope and the Setup 

TEM Philips EM400T (120 keV max) 
 40 keV ,   v=0.4 c , =h/p= 5.9 pm 

 
 

 
 
 

 
 

Source 

Sensor 

Sample 

    S - Small size source 

 

 

  C – Sample with  

  two slits 

 

 I,P – Image and        

        projection lenses 

 

 

 

 

 PO: projection plane 

 

Experimental conditions: plane wave approximation (Fraunhofer regime) 
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The Double Slit 

Focused Ion Beam from a  

liquid Ga+ Source 

  milling a 250nm thick gold layer,  

 deposited by flash evaporation on a copper grid 

   coated with carbon film 

 
 

 

 95 nm 

 
 

 
440 nm 

1
5
5
0
 n

m
. 

6 



The Sensor : APSEL 4D 

 
Vertex detector for High Energy 

Physics 
 
ST 130nm CMOS Technology 
 
4096 Monolithic Active Pixel Matrix 
 
Optimized for charged particle 

identification 
 
Each Pixel has Digital Output 
 Hit / No Hit  
     Position 
 Time Stamp 
  
x,y: spatial resolution 15 mm 
t:  max time resolution  0.4 ms 
 
Clock frequency: up to 20-50 MHz 

Squared Pixels 50 x 50 mm 

Sensitive Area : 6.4 mm x 1.6 mm 

32x128 pix - 50 mm pitch 

periph & spars logic 

Efficiency measured with 12 GeV 

proton beam at CERN: ≈ 90%  
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4096-MAPS matrix 



DAQ : Hardware 

 

- Real Time Data Acquisition 

- Sensor-> Board -> FPGA -> USB -> Computer 

- Micrometric Bidimensional Movimentation   

 

       

 

 

 

  

 FPGA 

Sensor 
USB 
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Analogic Controls 

Chip-FPGA logic level conversion 

Custom Board 

Demo Board 



Hardware 

• Connections and Movimentation 

Flange 

Sensor 

X-Y Plane Step Motors 
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Inside TEM 

Vacuum 

OutsideTEM 



Chip placement inside TEM 
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Microscope 



The Programmable Board 

Opal Kelly XEM 3050   
 

• Low Cost 

• Small  Dimensions (75mm x 50mm x 15.9mm) 

• Firmware/Software Libraries for 

  FPGA-PC interface 

 

 

 

USB 2.0 Connector :    PC 

 

Xilinx Spartan-3 FPGA 
        7000 CLB ~600 User I/O   

        1.8 kbit di Block RAM  

        4 Digital Clock Manager  

  

2 High Density 80-pin  

Expansion Connectors 11 

FPGA 



The Firmware 

 

• VHDL Code 
 

– Chip Configuration and Control 

 

– Data Reception, Elaboration, Formatting and  
 Transmission to PC 

 

– Clock Management 
• Fast clock  for Electronics 

• Slow control clock for Chip Configuration 

• Time Counter clock for the Sensor 
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Software 

Graphic Interface for Chip control and Data Acquisiton 
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• C++ code 

 

• Qt widget-based graphical 
libraries 

 

• Qwt libraries  for graphical 
visualization of events and 
histograms 
 

 

 Standard user  interface 



Single Registers  
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Software 

Pixel Configuration Interface 

Rows 

Single 
Pixels 

Macro Pixels 



Setup Test : Imaging 
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Single Slit Triple Slit 

Images of Single and Triple Slit on the sensor 

32 x 128 Pixel Matrix 32 x 128 Pixel Matrix 



X pixel 

Carbon Grating Diffraction  

X pixel 

Y
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Carbon diffraction grating: typical pitch 400 nm 

40-60 keV electrons:   =h/p= 5-6 pm, typical angle 10-5 rad 

Observation windows: 165 ms (6k fps) 

Average number of electrons : 8 

Peak separation:13 pixels 0,65 mm 



Carbon Grating Diffraction 
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Very High Statistic  ~ 10 Million Hits 



Single-electron interference I 

Double slit: distance d = 440 nm 

40 keV electrons:    = h/p = 5.9 pm 

Observation windows : 165 ms (6k fps) 
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Single-electron interference II 

Double slit: distance d=440 nm 

40 keV electrons:    = h/p = 5.9 pm 

Observation windows 165 ms (6k fps) 

Add Frames 
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X pixel 

Single-electron interference  III  

 ∆t=8.7 ms 
 Average time-distance 

Time in units of  165 ms 

100k e- observed in about 20min data taking 

At 0.4 c -> source-sensor  ~ 20 ns  

99.1% hits with single e- 
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X pixel 
X pixel 

X Projection  



Conclusion 

 

• We used for the first time a system of nanometric-slits with a  

       high space-time performance sensor 

 

• APSEL 4D (4096 pixels, 6k fps2M fps) developed by INFN via a 
R&D project oriented to the next generation of silicon trackers 
(SLIM5). 

 

• Developed a custom Hardware-Firmware-Software full DAQ chain 

 

• Reconstructed the Young interference with single electrons 

 

• The DAQ chain can be used for Chip and Electronics 
Characterization 

 

• The time resolution characteristics can be used in a new field 
of electron microscopy: the study of dynamic phenomena. 
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Deep NWell MAPS design 

• Full in-pixel signal processing chain     
exploiting triple well CMOS process 
• Deep NWell as collecting electrode 

with most of the front-end overalapped in 
the pwell 

• Can extend collecting electrode  
(charge preamp --> gain independent of 
sensor cap. )  

• Allow design with small “competitive” 
nwells for PMOS inside the pixel. 
Area kept to a minimum:, they steel signal 
to the main DNW electrode.  

• Fill factor = DNW/total n-well area 
~90% in present design 

• Pixel structure compatible with 
data sparsification architecture 

PRE SHAPER DISC LATCH 

competitive nwell 
Deep nwell 

• CMOS MAPS for future vertex detectors: thin (OK!)  but 
also need to be fast (i.e. bkgd rate @ SuperB:  several MHz/cm2) 

• New approach: hybrid-pixel-like structure to improve the 
readout speed 

50 mm pixel pitch 



DVDD_M

DGND_M

MAPS efficiency  
vs position within pixel 

Correspondence between the 
pixel layout and the 

efficiency map.  

1 2 3 

4 5 6 

7 8 9 

Competitive
nwells

Competitive
nwells

mm

m
m

Efficiency map inside pixel cell. 
Cross feed unfolded results.    



Instrumentation 
• TEM Philips M400T (120 keV max) 

 
• Two nanometric slits 
• slit width 95 nm  
• Slit length 1550 nm 
• Slit distance 440 nm  

 
• 4096 MAPs Sensor 
    ST 130nm CMOS 
 

 
• DAQ system 
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Set-up inside the TEM 
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S- Small size source 

 

C – Sample with two slits 

 

I,P – Image and        

        projection lenses 

 

PO: projection plane 

 

Experimental conditions: 

 Fraunhofer regime  

 (plane wave 
approximation) 



Set-up nel Microscopio 

S- Sorgente di piccole dimensioni 
  Elettroni da 40 keV ,   v=0.4 c 
   =h/p= 5.9 pm (1/18 diametro H),  
C – Campione a due fenditure 
  distanza d=440 nm 
 
I, P – Lenti immagine e di proiezione 
 
PO: piano di proiezione delle fenditure 
 
Condizioni sperimentali: 
 Regime di Fraunhofer 

(approssimazione di onde piane) 
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APSEL 4D Sensor 
Sviluppato dalla Collaborazione 

SLIM5 per un progetto per 
esperimenti di fisica delle 
particelle  

 Rivelatore di vertice di SuperB  
     (INFN: BG, BO, PI, PV, TS) 
 
Sensore Monolitico a Pixel Attivi  
Tecnologia CMOS ST 130 nm 
 
Architettura di readout integrata,  
 ottimizzata per il tracciamento 

di particelle cariche 
 
Informazione di uscita 3D: 
 x,y: risoluzione spaziale 15 mm 
 t: risoluzione temporale > 0.4 ms 
 
Frequenza di clock: 20-50 MHz 

4096-MAPS matrix 100k std-cell area 

Pixels quadrati di lato 50 mm 

Area sensibile: 6.4 mm x 1.6 mm = 10 mm2 

32x128 pix - 50 mm pitch 

periph & spars logic 

Efficienza misurata con fasci di protoni da 

12 GeV: ≈ 90%  
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Data Acquisition 

 

- Real Time Data Acquisition 

- Sensor-> FPGA -> USB -> Computer 

- Micrometric Bidimensional Movimentation   

 

       

 

 

 

  

 FPGA 

Sensor 

USB 
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Pixel Configuration Interface 
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Enable / Disable Macro-Pixels 

Rows 

Single Pixels 



Thin wire Diffraction 

40-60 keV electrons:   =h/p= 5,9 pm, typical angle 10-5 rad 

Average Hits per frame ~ 1 -> Single Electron 
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X pixel 

X pixel 



X pixel 

Calibration : Carbon Grating Diffraction 
d
N

/d
x
 

Carbon Grating Diffraction: typical step 400 nm 

40 keV Electrons : =h/p= 5,9 pm, angles ≈ 10-5 rad 

3 millisecond observation windows  

High Average Electron Number  

Good Signal; 

No significant background 

Distance between peaks:   

13 pixels  0,65 mm 
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The single-electron interference III 

Average arrival time distance  3.1 ms 

Time of flight within TEM          10 ns 



The single-electron interference IV 

Average time-distance 
among e-: ∆t=6.6 ms 

Time in 165 ms units 

430k observed electrons in about 1h of measurements 

98.8% images of single e- 
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