Composite Higgs Models

Michele Redi

OUTLINE

OUTLINE

• Standard Model Higgs

• Physics Beyond the SM

• Composite Higgs

STANDARD MODEL

SM is built on the principle of gauge invariance

• U(I): Electromagnetism

$$A_{\mu}(x) \to A_{\mu}(x) + \partial_{\mu}\alpha(x)$$

$$\mathcal{L} = -\frac{1}{4e^2} F_{\mu\nu} F^{\mu\nu}$$

SM is built on the principle of gauge invariance

• U(I): Electromagnetism

$$A_{\mu}(x) \to A_{\mu}(x) + \partial_{\mu}\alpha(x)$$

$$\mathcal{L} = -\frac{1}{4e^2} F_{\mu\nu} F^{\mu\nu}$$

• SU(n): Yang-Mills theory

$$\delta A^a_\mu \to f^{abc} \alpha^b A^c_\mu + \partial_\mu \alpha^a$$

$$\mathcal{L} = -\frac{1}{4g^2} F^a_{\mu\nu} F^{a\mu\nu}$$

SM gauge group:

$SU(3)_c \otimes SU(2)_L \otimes U(1)_Y$

Friday, April 19, 13

SM gauge group:

$SU(3)_c \otimes SU(2)_L \otimes U(1)_Y$

 $g_3 \simeq 0.36$

Unbroken symmetry forbids mass terms: vacuum must respect a smaller symmetry

$$SU(3)_c \otimes U(1)_Q \longrightarrow \frac{SU(2)_L \times U(1)_Y}{U(1)_Q}$$

Unbroken symmetry forbids mass terms: vacuum must respect a smaller symmetry

$$SU(3)_c \otimes U(1)_Q \longrightarrow \frac{SU(2)_L \times U(1)_Y}{U(1)_Q}$$

 $\alpha = - \langle - \rangle$

family type	ups	downs	leptons
3rd	$m_t = 175$	$m_b = 4.2$	$m_{\tau} = 1.7$
2nd	$m_c = 1.2$	$m_{s} = 0.1$	$m_{\mu} = 0.1$
l st	$m_u = 3 \times 10^{-3}$	$m_d = 5 \times 10^{-3}$	$m_e = 5 \times 10^{-4}$

$$m_W = 80.4 \,\mathrm{GeV}$$

 $m_Z = 91.2 \,\mathrm{GeV}$

Mass for spin-1 means new degrees of freedom

Mass for spin-1 means new degrees of freedom

The extra degrees of freedom are Goldstone Bosons

$$\frac{SU(2)_L \times U(1)_Y}{U(1)_Q} \longrightarrow 3 \text{ GB}$$

Conceptually identical to superconductivity.

In SM electro-weak symmetry broken by scalar doublet

$$H = \left(\begin{array}{c} h_1 + ih_2 \\ h_3 + ih_4 \end{array}\right)$$

$$V(H) = \lambda \left(|H|^2 - v^2 \right)^2$$

In SM electro-weak symmetry broken by scalar doublet

$$H = \left(\begin{array}{c} h_1 + ih_2 \\ h_3 + ih_4 \end{array}\right)$$

$$V(H) = \lambda \left(|H|^2 - v^2 \right)^2$$

$$H(x) = U(x) \begin{pmatrix} 0 \\ v + h(x) \end{pmatrix}, \qquad v = 174 \, GeV$$

Physical scalar is the Higgs boson $m_h = \sqrt{\lambda} v$

In principle Higgs scalar not even needed

$$A(W_L^+ W_L^- \to W_L^+ W_L^-) \sim \frac{E^2}{v^2}$$

In principle Higgs scalar not even needed

$$A(W_L^+ W_L^- \to W_L^+ W_L^-) \sim \frac{E^2}{v^2}$$

SM without Higgs does not make sense above

$$\Lambda = 4\pi v \sim 3 \mathrm{TeV}$$

New strong interactions could break the electro-weak symmetry. This is known as technicolor.

No Higgs scalar but techni-resonances (spin 0, 1/2, 1, ... etc.).

 $----- m_{
ho} < 3 \,\mathrm{TeV}$

$$m_W = 80 \,\mathrm{GeV}$$

 $A(W_L^+ W_L^- \to W_L^+ W_L^-) \sim m_h^2$ $(E \gg m_h)$

SM with Higgs can be valid up to high scale.

Electro-weak scale is the analog the sea

 $m_W = 80 \,\mathrm{GeV}$

Electro-weak scale is the analog the sea

 $m_W = 80 \,\mathrm{GeV}$

Waves are the "Higgs"

SM sea is "calm"

Electro-weak scale is the analog the sea

$$m_w = 80 \,\mathrm{GeV}$$

Waves are the "Higgs"

Storms are can be unpredictable...

July 31, 2012 Phys. Lett. B716

 $m_h \approx 125 \,\mathrm{GeV}$

With I25 GeV Higgs SM can be valid up Mp. SM sea is as calm as it can be!!!

Friday, April 19, 13

BEYOND SM

WHY?

- SM is incomplete: no quantum gravity, no dark matter
- Matter-anti-matter asymmetry
- Why 3 generations?
- Why fermion masses so different?
- Strong CP problem

• Hierarchy or naturalness problem

We don't understand why gravity is so weak:

Gravity and other forces unify at

$$M_p = (8\pi G_N)^{-\frac{1}{2}} = 10^{19} \,\mathrm{GeV}$$

Hierarchy (naturalness) problem:

 $\frac{m_h^2}{M_p^2} \sim 10^{-34}$

Hierarchy (naturalness) problem:

$$\frac{m_h^2}{M_p^2} \sim 10^{-34}$$

Electro-weak scale is unstable

$$\Lambda \sim M_p$$

$$\Lambda \sim M_p$$

Natural theory:

$$\Lambda \sim \text{TeV}$$

Two paradigms:

• Weak Coupling: Supersymmetry

 $\sim 100 \, {\rm GeV}$

Two paradigms:

• Weak Coupling: Supersymmetry

• Strong Coupling: Technicolor, Composite Higgs, Higgs ess, Extra-dimensions ...

COMPOSITE HIGGS

Higgs doublet could be a bound state

Strong sector: resonances + Higgs bound state

spin I spin 1/2 spin 0 Higgs doublet

Compositeness scale acts as cut-off

$$\delta m_h^2 \sim \frac{g_{SM}^2}{16\pi^2} m_\rho^2$$

Higgs doublet could be a bound state

Compositeness scale acts as cut-off

$$\delta m_h^2 \sim \frac{g_{SM}^2}{16\pi^2} m_\rho^2$$

Natural theory

Scalars automatically massless if they are Goldstone bosons

Higgs could be an approximate GB

Georgi, Kaplan '80s

Agashe , Contino, Pomarol, '04

Many possibilities:

G	H	N_G	NGBs rep. $[H] = \operatorname{rep.}[\operatorname{SU}(2) \times \operatorname{SU}(2)]$
SO(5)	SO(4)	4	4 = (2, 2)
SO(6)	SO(5)	5	${f 5}=({f 1},{f 1})+({f 2},{f 2})$
SO(6)	$SO(4) \times SO(2)$	8	$4_{+2} + \bar{4}_{-2} = 2 \times (2, 2)$
SO(7)	SO(6)	6	${f 6}=2 imes ({f 1},{f 1})+({f 2},{f 2})$
SO(7)	G_2	7	7 = (1, 3) + (2, 2)
SO(7)	$SO(5) \times SO(2)$	10	$\mathbf{10_0} = (3, 1) + (1, 3) + (2, 2)$
SO(7)	$[SO(3)]^{3}$	12	(2, 2, 3) = 3 imes (2, 2)
Sp(6)	$Sp(4) \times SU(2)$	8	$(4, 2) = 2 \times (2, 2), (2, 2) + 2 \times (2, 1)$
SU(5)	$SU(4) \times U(1)$	8	$4_{-5}+ar{4}_{+5}=2 imes(2,2)$
SU(5)	SO(5)	14	14 = (3 , 3) + (2 , 2) + (1 , 1)

Mrazek et al., 'I I

Deviations from SM:

 $\sqrt{2}i\frac{m_W^2}{v}\left(1+a\frac{v^2}{f^2}\right)$

Deviations from SM:

Spectrum:

$$m_h = 125 \,\text{GeV}$$
$$m_W = 80 \,\text{GeV}$$
$$0$$

5D Models

SM fields propagate in the extra dimension. Different profiles generate hierarchies.

Each SM state correspond to a 5D field!

$$e_R(x) \longrightarrow e_R^i(x,y)$$

• 4D Models

5D models are dual to 4D strongly coupled theories

5th dimension dual to energy scale

Effective field theory: Physics at a scale Λ largely independent on shorter distances.

For LHC focus on the lightest degrees of freedom

For LHC focus on the lightest degrees of freedom

For LHC focus on the lightest degrees of freedom

GOAL: Find an effective theory compatible with experiments (and predicts new testable phenomena). Not the full theory!

Friday, April 19, 13

• SM describes all we know but cannot be full story

• SM describes all we know but cannot be full story

• Naturalness suggests presence of new physics at LHC energies. The Higgs particle could be composite.

• SM describes all we know but cannot be full story

• Naturalness suggests presence of new physics at LHC energies. The Higgs particle could be composite.

• No full theory yet. For phenomenology effective description sufficient.

Without tuning:

 $m_h \sim \Lambda$

Without tuning:

 $m_h \sim \Lambda$

No obvious experimentalist:

New physics will be seen at the LHC

Friday, April 19, 13

$$\mu \frac{d\lambda}{d\mu} = \frac{1}{16\pi^2} (24\lambda^2 - 6y_t^4 + \dots)$$

 $115\,\mathrm{GeV} < m_h < 160\,\mathrm{GeV}$

With I25 GeV Higgs SM can be valid up Mp. SM sea is as calm as it can be!!!