Nucleons form factors and the final state radiation for the process $e^+e^- o p \bar p \gamma$

H. CZYŻ, IF, UŚ, Katowice,

in collaboration with

J.H.Kühn and Sz.Tracz

RMC WG Meeting, Trento 2013

Outline of the talk

- \Rightarrow Motivation
- \Rightarrow Nucleon form factors
- ⇒ FSR radiative corrections
- \Rightarrow Implementation in PHOKHARA
- \Rightarrow Importance of the FSR corrections
- \Rightarrow Final remarks

2

Why proton FFs

Arrington et al., Phys. Rev. C 68 (2003) 034325

Why proton FFs

Carl E. Carlson , Marc Vanderhaeghen, Ann.Rev.Nucl.Part.Sci. 57 (2007) 171-204

H. Czyż, IF, UŚ, Katowice,

Nucleon form factors and FSR for $e^+e^-
ightarrow par p\gamma$,

nucleon FF

BaBar: Phys.Rev.D73:012005,2006.

THE RADIATIVE RETURN METHOD

High precision measurement of the hadronic cross-section at meson-factories

MC generators needed

Form factors i PHOKHARA

$$G_M^N = F_1^N + F_2^N, ~~G_E^N = F_1^N + au F_2^N$$

$$F_{1,2}^p = F_{1,2}^s + F_{1,2}^v, \ \ F_{1,2}^n = F_{1,2}^s - F_{1,2}^v$$

H. Czyż, IF, UŚ, Katowice,

8

Form factors i PHOKHARA

$$\begin{split} F_1^s &= \frac{1}{2} \frac{\sum_{n=0}^3 c_n^1 B W_{\omega_n}(s)}{\sum_{n=0}^3 c_n^1} \\ F_1^v &= \frac{1}{2} \frac{\sum_{n=0}^3 c_n^2 B W_{\rho_n}(s)}{\sum_{n=0}^3 c_n^2} \\ F_2^s &= -\frac{1}{2} b \frac{\sum_{n=0}^3 c_n^3 B W_{\omega_n}(s)}{\sum_{n=0}^3 c_n^3} \\ F_2^v &= \frac{1}{2} a \frac{\sum_{n=0}^3 c_n^4 B W_{\rho_n}(s)}{\sum_{n=0}^3 c_n^4} \end{split}$$

Form factors i PHOKHARA

$$BW_i=rac{m_i^2}{m_i^2-s-im_i\Gamma_i},$$
 $a=\mu_p-\mu_n-1$ $b=-\mu_p-\mu_n+1$

$$F_1 \sim rac{1}{(Q^2)^2}, \;\; F_2 \sim rac{1}{(Q^2)^3}.$$

G. P. Lepage, S. J. Brodsky, Phys. Rev. D 22, 2157 (1980)

Experiment	number of points	chi-squared value	Experiment	number of points	chi-squared value
BaBar cross section	38	39.69	FENICE pp cross section	5	4.42
DM2 cross section	7	24.52	DM1 cross section	4	1.23
Adone cross section	1	0.46	BES cross section	8	13.58
CLEO cross section	1	0.127	JLab 2005 proton ratio	10	18.47
JLab 2002 proton ratio	4	5.32	JLab 2001 proton ratio	13	9.52
MAMI proton ratio	3	2.08	JLab 2010 proton ratio	3	3.63
PS 170 ratio	5	5.98	BaBar ratio	6	22.27
PS170 cross section	8	8.07	PS170 cross section	3	1.8
E760 cross section	3	1.05	E835 cross section	5	3.51
E835 cross section	2	0.08	JLab n ratio	3	3.64
BLAST n ratio	4	6.07	FENICE n cross section	4	15.26

Table 1: $N_{par} = 12, N_{points} = 136, \chi^2 = 191$

Nucleon form factors and FSR for $e^+e^-
ightarrow p \bar{p} \gamma$, 12

Nucleon form factors and FSR for $e^+e^-
ightarrow p \bar p \gamma$, 13

Nucleon form factors and FSR for $e^+e^-
ightarrow p ar p \gamma$, 14

H. Czyż, IF, UŚ, Katowice,

Nucleon form factors and FSR for $e^+e^-
ightarrow par p\gamma$,

15

Nucleon form factors and FSR for $e^+e^-
ightarrow par p\gamma$, 16

Nucleon form factors and FSR for $e^+e^-
ightarrow p \bar{p} \gamma$, 17

Nucleon form factors and FSR for $e^+e^-
ightarrow p ar p \gamma$, 18

H. Czyż, IF, UŚ, Katowice,

Nucleon form factors and FSR for $e^+e^-
ightarrow p ar p \gamma$,

19

Nucleon form factors and FSR for $e^+e^-
ightarrow p \bar{p} \gamma$, 20

Nucleon form factors and FSR for $e^+e^-
ightarrow par p\gamma$,

Nucleon form factors and FSR for $e^+e^- \rightarrow p\bar{p}\gamma$, 22

Radiative corrections

$$\Delta_{vert} = rac{2lpha}{\pi} [rac{(1+eta^2)}{2eta} \log rac{Q^2(1+eta)^2}{4m_p^2} - 1] \log 2w$$

$$F(yy)=f(yy)-f(\pilpha)+rac{3lpha}{4\pi}+1$$

$$f(yy)=rac{yy}{1-\exp(-yy)},\qquad yy=\pilpha/eta$$

H. Czyż, IF, UŚ, Katowice,

Nucleon form factors and FSR for $e^+e^-
ightarrow p ar p \gamma$, 24

Nucleon form factors and FSR for $e^+e^- \rightarrow p\bar{p}\gamma$, 25

Nucleon form factors and FSR for $e^+e^- \rightarrow p\bar{p}\gamma$, 26

Nucleon form factors and FSR for $e^+e^- \rightarrow p\bar{p}\gamma$, 27

Nucleon form factors and FSR for $e^+e^- \rightarrow p\bar{p}\gamma$, 28

Nucleon form factors and FSR for $e^+e^- \rightarrow p\bar{p}\gamma$, 29

FSR

Nucleon form factors and FSR for $e^+e^- \rightarrow p\bar{p}\gamma$, 30

H. Czyż, IF, UŚ, Katowice,

Nucleon form factors and FSR for $e^+e^-
ightarrow p ar p \gamma$,

31

Final remarks

 \Rightarrow New model of the nucleon FFs developed

 $\Rightarrow\,$ FSRNLO corrections implemented in PHOKHARA for $e^+e^- \rightarrow \bar{p}p\gamma$

⇒ FSR radiative corrections important for precision measurements