Estimated calculation of the hadronic light-by-light contribution to the (g-2) of the muon

Outline

- The anomalous magnetic moment of the muon
 - state-of-the-art: the 3σ deviation
- The Hadronic light-by-light contribution:
 - an estimated calculation
- Conclusions and Outlook

• gyromagnetic ratio: g $\vec{\mu} = g \frac{e}{2m} \cdot \vec{S}$ spin $\frac{1}{2} \rightarrow$ Dirac theory: g = 2QFT: $g \neq 2$

- Deviation from the Dirac value g = 2 is: $a_{\mu} = \frac{g_{\mu} - 2}{2}$
- BNL E821: 11659208.9±6.4 10⁻¹⁰ Bennet et al, PRD73,072003 (2006)

Anomalous magnetic moment a_{μ} (anomaly):

$g_{\mu} = 2\left(1 + a_{\mu} = \frac{\alpha}{2\pi}\right)$	$+\cdots$	$a_{\mu}^{th} = a_{\mu}^{QED} + a_{\mu}^{weak} + a_{\mu}^{had}$
Contribution	Result in 10^{-10} units	
$\overline{\text{QED}(\text{leptons})}$	11658471.885 ± 0.004	Kinoshita et al 2012
HVP(leading order)	692.3 ± 4.2	Davier et al 2011
HVP(higher order)	-9.84 ± 0.07	Hagiwara et al 2009
HLBL	11.6 ± 4.0	Jegerlehner and Nyffeler 2009
EW	15.4 ± 0.2	Czarnecki <i>et al</i> 2003
Total	11659181.3 ± 5.8	

Anomalous magnetic moment a_{μ} (anomaly):

$g_{\mu} = 2$	$2\bigg(1+a_{\mu}=\frac{\alpha}{2\pi}+$	$+\cdots$	$a_{\mu}^{th} = a_{\mu}^{QED} + a_{\mu}^{weak} + a_{\mu}^{had}$
	Contribution	Result in 10^{-10} uni	JS
-	QED(leptons)	11658471.885 ± 0.00	Kinoshita et al 2012
	HVP(leading order)	692.3 ± 4.2	Davier et al 2011
	HVP(higher order)	-9.84 ± 0.07	Hagiwara et al 2009
	HLBL	11.6 ± 4.0	Jegerlehner and Nyffeler 2009
_	EW	15.4 ± 0.2	Czarnecki et al 2003
_	Total	11659181.3 ± 5.8	

$$a_{\mu}^{exp} - a_{\mu}^{SM} = 27.6(8.0) \times 10^{-10} \Rightarrow 3.4\sigma$$

Anomalous magnetic moment a_{μ} (anomaly):

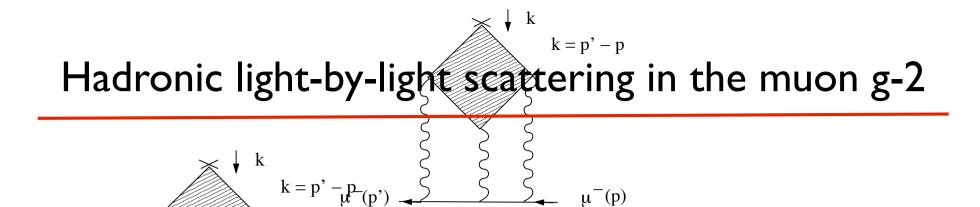
 $g_{\mu} = 2\left(1 + a_{\mu} = \frac{\alpha}{2\pi} + \cdots\right)$ $a^{th}_{\mu} = a^{QED}_{\mu} + a^{weak}_{\mu} + a^{had}_{\mu}$ Result in 10^{-10} units Contribution New g-2 experiment at Fermilab with error QED(leptons) 11658471.885 ± 0.004 HVP(leading order) 692.3 ± 4.2 1.6×10^{-10} HVP(higher order) -9.84 ± 0.07 11.6 ± 4.0 HLBL 15.4 ± 0.2 EW 11659181.3 ± 5.8 Total

$$a_{\mu}^{exp} - a_{\mu}^{SM} = 27.6(8.0) \times 10^{-10} \Rightarrow 3.4\sigma$$

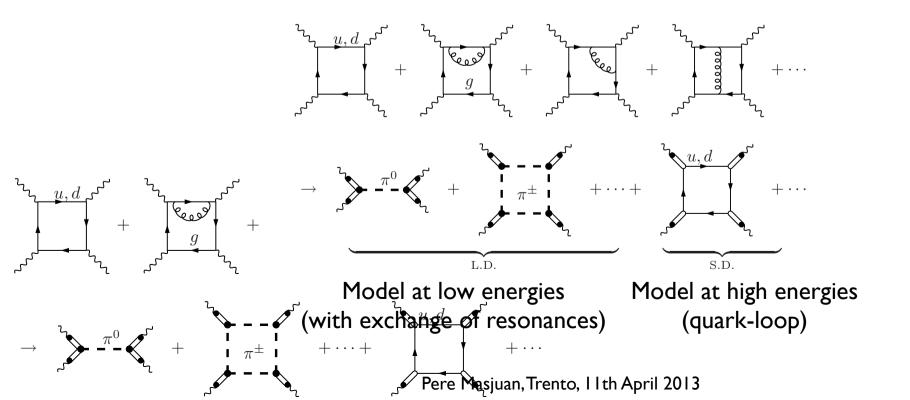
Anomalous magnetic moment a_{μ} (anomaly):

Contribution	Result in 10^{-10} units		
QED(leptons)	11658471.885 ± 0.004		
HVP(leading order)	692.3 ± 4.2		
HVP(higher order)	-9.84 ± 0.07		
HLBL	11.6 ± 4.0		
EW	15.4 ± 0.2		
Total	11659181.3 ± 5.8		

$$a_{\mu}^{exp} - a_{\mu}^{SM} = 27.6(8.0) \times 10^{-10} \Rightarrow 3.4\sigma$$



order $O(\alpha^3)$ hadronic contribution

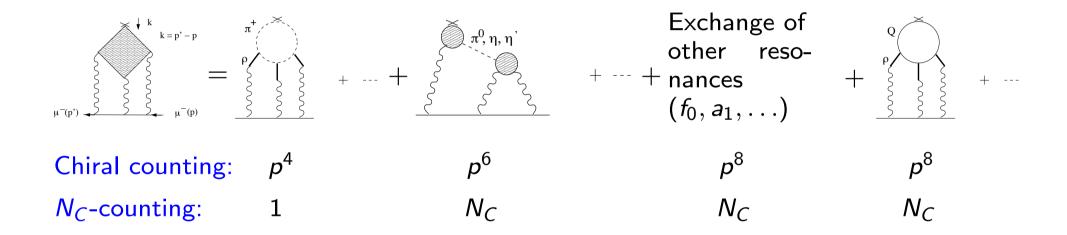


 $\mu^{-}(p)$

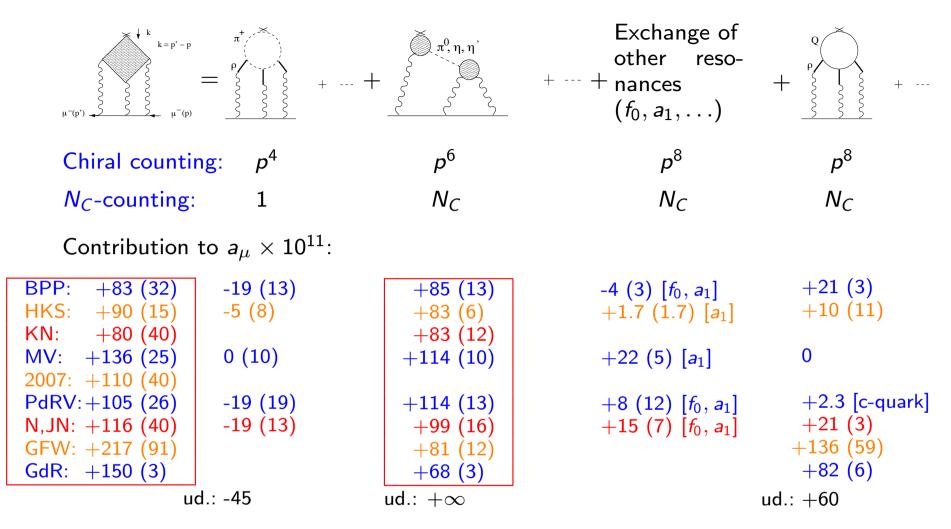
μ⁻(p')

Classification proposal by Eduardo de Rafael '94

Chiral Perturbation Theory counting (p^2) +large-Nc counting



Pesudoscalars: numerically dominant contribution (according to most models)



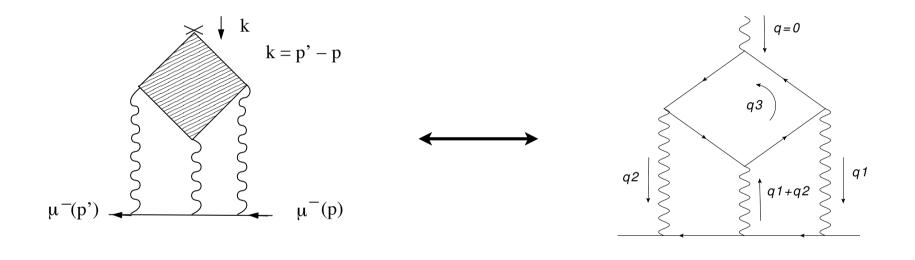
ud. = undressed, i.e. point vertices without form factors

BPP = Bijnens, Pallante, Prades '96, '02; HKS = Hayakawa, Kinoshita, Sanda '96, '98, '02; KN = Knecht, Nyffeler '02; MV = Melnikov, Vainshtein '04; 2007 = Bijnens, Prades; Miller, de Rafael, Roberts; PdRV = Prades, de Rafael, Vainshtein '09; N,JN = Nyffeler '09; Jegerlehner, Nyffeler '09; GFW = Goecke, Fischer, Williams '11 (total includes estimate of "other contributions" = 0 (20)); GdR = Greynat, de Rafael '12 (given error only reflects variation $M_Q = 240 \pm 10$ MeV, estimated 20%-30% systematic error)

Recall (in units of 10^{-11}): δa_{μ} (had. VP) ≈ 45 ; δa_{μ} (exp [BNL]) = 63; δa_{μ} (future exp) = 15 Pere Masjuan, Trento, 11th April 2013

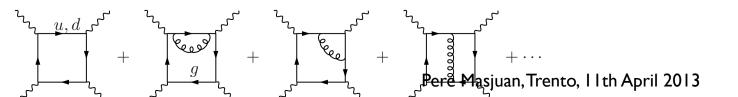
P.M and M.Vanderhaeghen 2012

Duality argument between the hadronic degrees of freedom and the well-known quark loop contribution



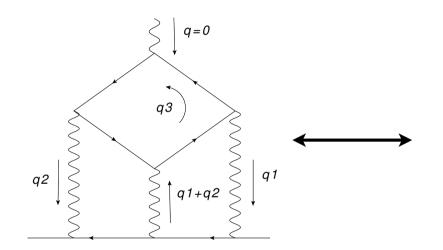
$$a_{\mu}^{HLBL}(M(Q)) = \left(\frac{\alpha}{\pi}\right)^3 N_c \left(\sum_{q=u,d,s} Q_q^4\right) \left[\left(\frac{3}{2}\zeta(3) - \frac{19}{16}\right) \frac{m_{\mu}^2}{M(Q)^2} + \mathcal{O}\left(\frac{m_{\mu}^4}{M(Q)^4}\log^2\frac{m_{\mu}^2}{M(Q)^2}\right) \right]$$

Laporta and Remiddi 1996



P.M and M.Vanderhaeghen 2012

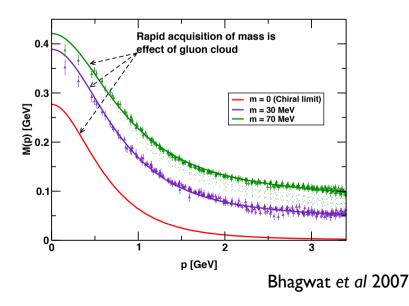
Duality argument between the hadronic degrees of freedom and the well-known quark loop contribution



For the duality estimate:

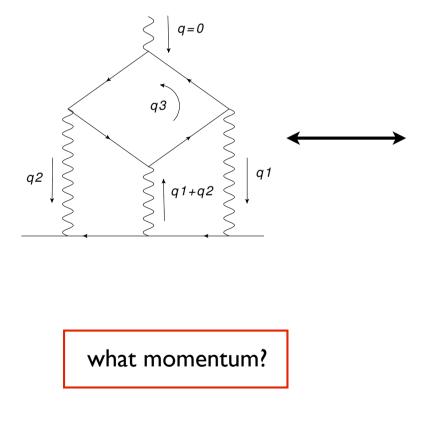
- quark: running momentum dependent mass
- use <u>lattice calculation</u>

(extrapolated at chiral limit using Dyson-Schwinger equation framework)



P.M and M.Vanderhaeghen 2012

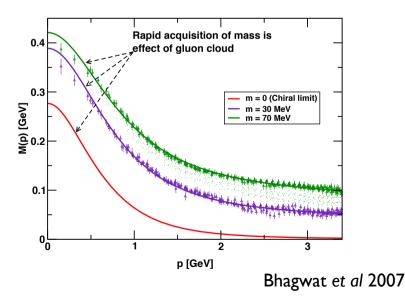
Duality argument between the hadronic degrees of freedom and the well-known quark loop contribution



For the duality estimate:

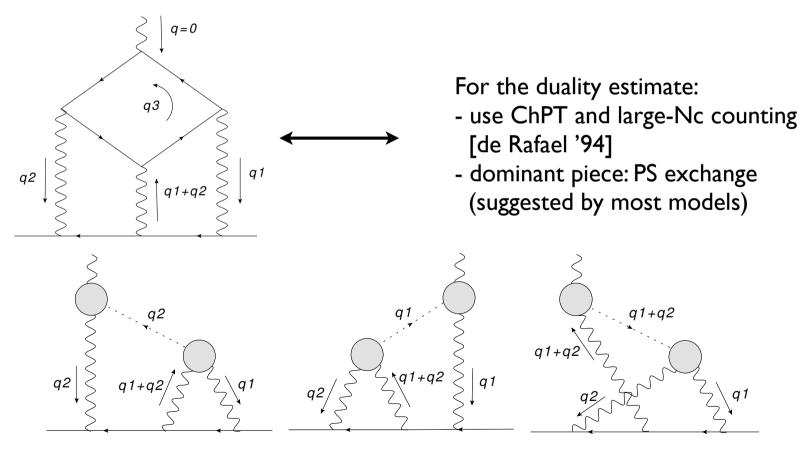
- quark: running momentum dependent mass
- use <u>lattice calculation</u>

(extrapolated at chiral limit using Dyson-Schwinger equation framework)



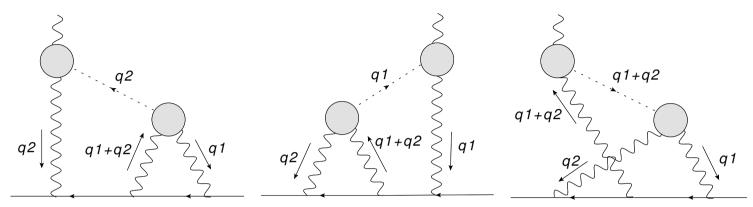
P.M and M.Vanderhaeghen 2012

Duality argument between the hadronic degrees of freedom and the well-known quark loop contribution



Obtain average momenta $M(Q_1)$ and $M(Q_2)$

(using the hyperspherical approach developed in [Knecht and Nyffeler '01])

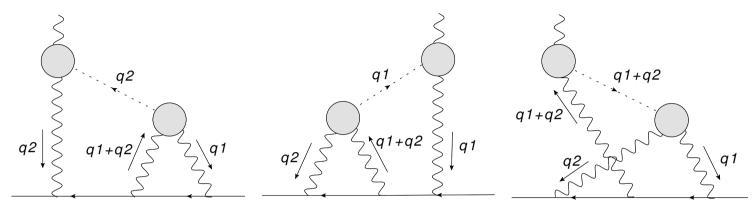


$$a_{\mu}^{LbyL;\pi^{0}} = -e^{6} \int \frac{d^{4}q_{1}}{(2\pi)^{4}} \int \frac{d^{4}q_{2}}{(2\pi)^{4}} \frac{1}{q_{1}^{2}q_{2}^{2}(q_{1}+q_{2})^{2}[(p+q_{1})^{2}-m^{2}][(p-q_{2})^{2}-m^{2}]}$$

$$\times \left(\frac{F_{\pi^{0}\gamma^{*}\gamma^{*}}(q_{1}^{2},(q_{1}+q_{2})^{2})F_{\pi^{0}\gamma^{*}\gamma^{*}}(q_{2}^{2},0)}{q_{2}^{2}-M_{\pi}^{2}}T_{1}(q_{1},q_{2};p)\right)$$

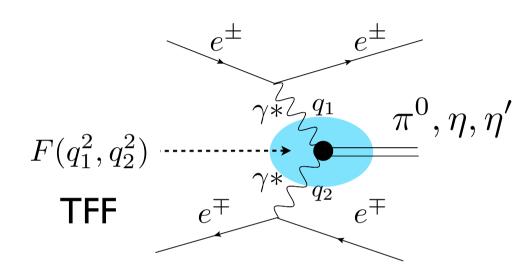
$$+\frac{F_{\pi^{0}\gamma^{*}\gamma^{*}}(q_{1}^{2},q_{2}^{2})F_{\pi^{0}\gamma^{*}\gamma^{*}}((q_{1}+q_{2})^{2},0)}{(q_{1}+q_{2})^{2}-M_{\pi}^{2}}T_{2}(q_{1},q_{2};p)\right)$$

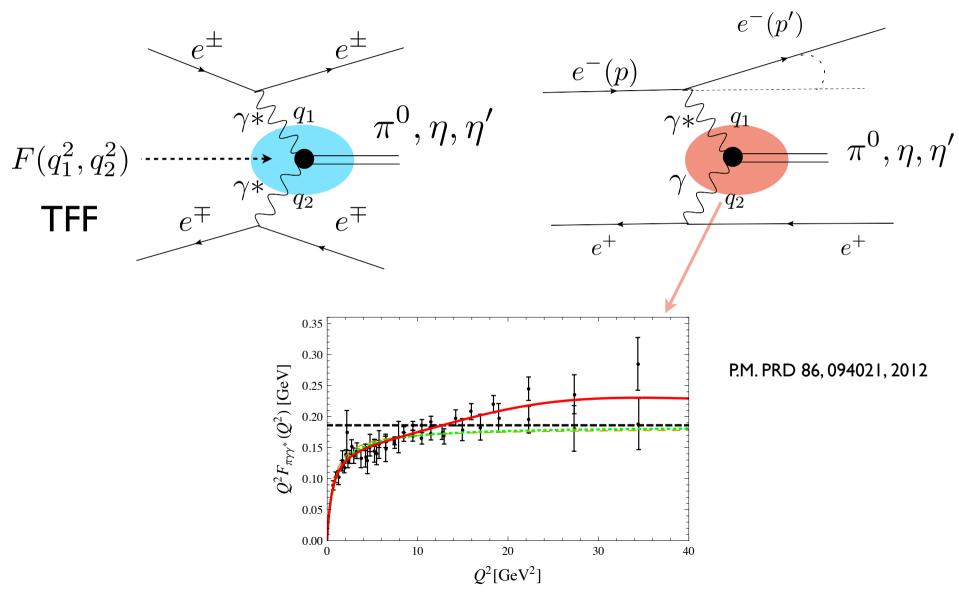
(using the hyperspherical approach developed in [Knecht and Nyffeler '01])



$$a_{\mu}^{LbyL;\pi^{0}} = -e^{6} \int \frac{d^{4}q_{1}}{(2\pi)^{4}} \int \frac{d^{4}q_{2}}{(2\pi)^{4}} \frac{1}{q_{1}^{2}q_{2}^{2}(q_{1}+q_{2})^{2}[(p+q_{1})^{2}-m^{2}][(p-q_{2})^{2}-m^{2}]}$$

$$\times \left(\underbrace{F_{\pi^{0}\gamma^{*}\gamma^{*}}(q_{1}^{2},(q_{1}+q_{2})^{2})F_{\pi^{0}\gamma^{*}\gamma^{*}}(q_{2}^{2},0)}{q_{2}^{2}-M_{\pi}^{2}}T_{1}(q_{1},q_{2};p) \right)$$
Use data from the π -Transition Form Factor
$$+ \underbrace{F_{\pi^{0}\gamma^{*}\gamma^{*}}(q_{1}^{2},q_{2}^{2})F_{\pi^{0}\gamma^{*}\gamma^{*}}((q_{1}+q_{2})^{2},0)}{(q_{1}+q_{2})^{2}-M_{\pi}^{2}}T_{2}(q_{1},q_{2};p) \right)$$

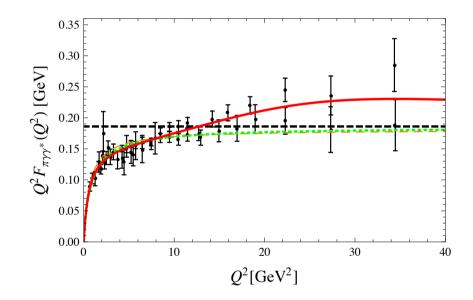




Pere Masjuan, Trento, 11th April 2013

- Extraction of meson TFF (example π^0)
 - Using CLEO, CELLO, BaBar and Belle to obtain the TFF Low-energy Constants, constrain hadronic model and estimation of π^0 -HLBL

1

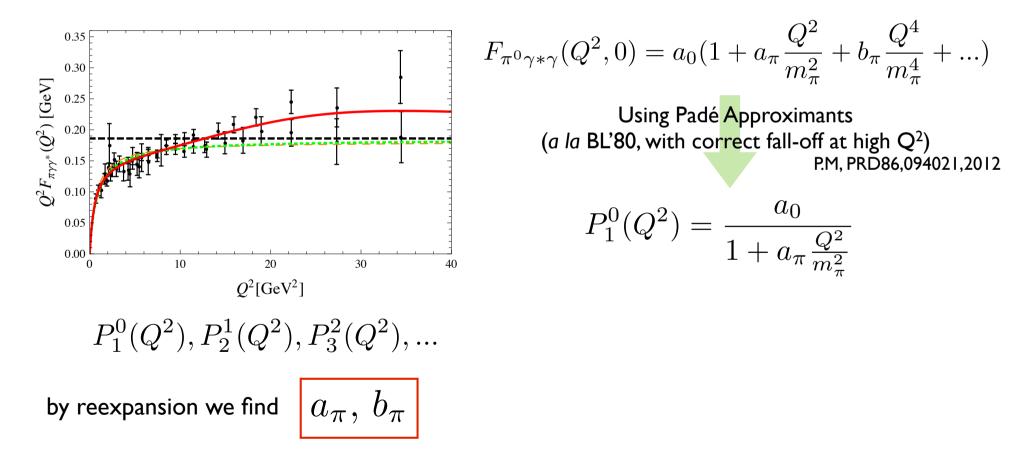


$$F_{\pi^0\gamma*\gamma}(Q^2,0) = a_0(1 + a_\pi \frac{Q^2}{m_\pi^2} + b_\pi \frac{Q^4}{m_\pi^4} + \dots)$$

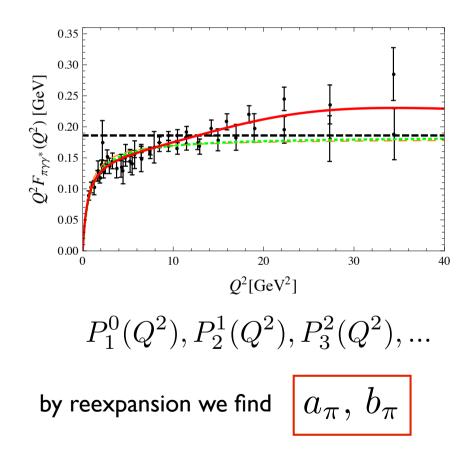
Using Padé Approximants (*a la* BL'80, with correct fall-off at high Q²) P.M, PRD86,094021,2012

$$P_1^0(Q^2) = \frac{a_0}{1 + a_\pi \frac{Q^2}{m_\pi^2}}$$

- Extraction of meson TFF (example π^0)
 - Using CLEO, CELLO, BaBar and Belle to obtain the TFF Low-energy Constants, constrain hadronic model and estimation of π^0 -HLBL



- Extraction of meson TFF (example π^0)
 - Using CLEO, CELLO, BaBar and Belle to obtain the TFF Low-energy Constants, constrain hadronic model and estimation of π^0 -HLBL



$$F_{\pi^0\gamma*\gamma}(Q^2,0) = a_0(1 + a_\pi \frac{Q^2}{m_\pi^2} + b_\pi \frac{Q^4}{m_\pi^4} + \dots)$$

Using Padé Approximants (*a la* BL'80, with correct fall-off at high Q²) P.M, PRD86,094021,2012

$$a_{\pi} = 0.0324(12)_{stat}(19)_{sys}$$

$$b_{\pi} = 1.06(9)_{stat}(25)_{sys}$$

to be compared with:

 $\begin{array}{lll} \bullet \mbox{ChPT:} & a_{\pi} = 0.036 \ \mbox{[Bijnens,Bramon,Cornet'90]} \\ \bullet \mbox{Dalitz decay:} & a_{\pi} = 0.029(5) \ \mbox{[Kampf,Knecht,Novotny '06]} \\ \bullet \mbox{Regge theory:} & a_{\pi} = 0.032(1) \ \ \mbox{[Arriola,Broniowski '10]} \\ \bullet \mbox{Ads/QCD:} & a_{\pi} = 0.031 \ \ \mbox{[Grigoryan,Radyushkin '08]} \end{array}$

- Extraction of meson TFF (example π^0)
 - Using CLEO, CELLO, BaBar and Belle to obtain the TFF Low-energy Constants, constrain hadronic model and estimation of π^0 -HLBL

$$F_{\pi^0\gamma*\gamma}(Q^2,0) = a_0(1 + a_\pi \frac{Q^2}{m_\pi^2} + b_\pi \frac{Q^4}{m_\pi^4} + \dots)$$

$$a_{\pi} = 0.0324(12)_{stat}(19)_{sys}$$

$$b_{\pi} = 1.06(9)_{stat}(25)_{sys}$$
+ $\Gamma_{\pi^{0}\gamma\gamma} \sim F_{\pi^{0}\gamma\gamma}(0,0)$ and M_{ρ}

$$F_{\pi\gamma^*\gamma^*}^{P01}(Q_1^2, Q_2^2) = P_1^0(Q_1^2, Q_2^2) = a \frac{b}{Q_1^2 + b} \frac{b}{Q_2^2 + b}$$

$$F_{\pi\gamma^*\gamma^*}^{P12}(Q_1^2, Q_2^2) = P_2^1(Q_1^2, Q_2^2) = \frac{a + bQ_1^2}{(Q_1^2 + c)(Q_1^2 + d)} \frac{a + bQ_2^2}{(Q_2^2 + c)(Q_2^2 + d)}$$

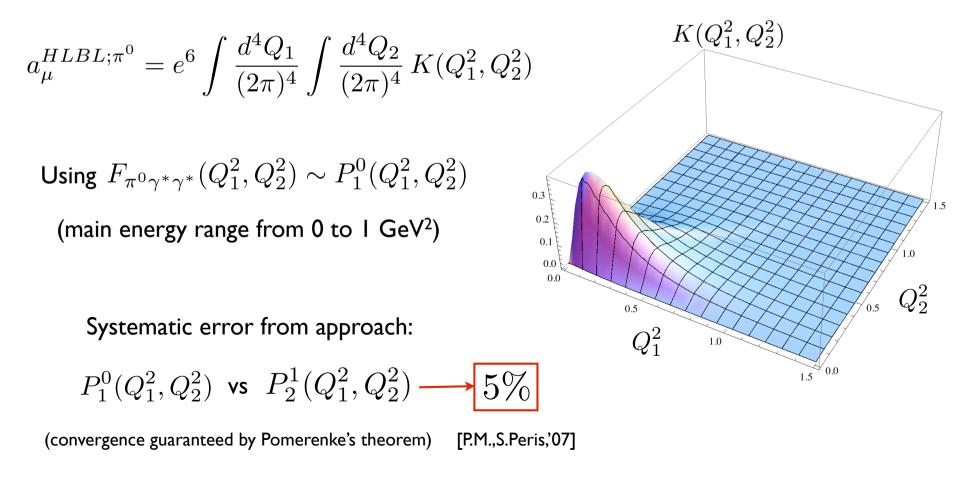
• Extraction of meson TFF and HLBL

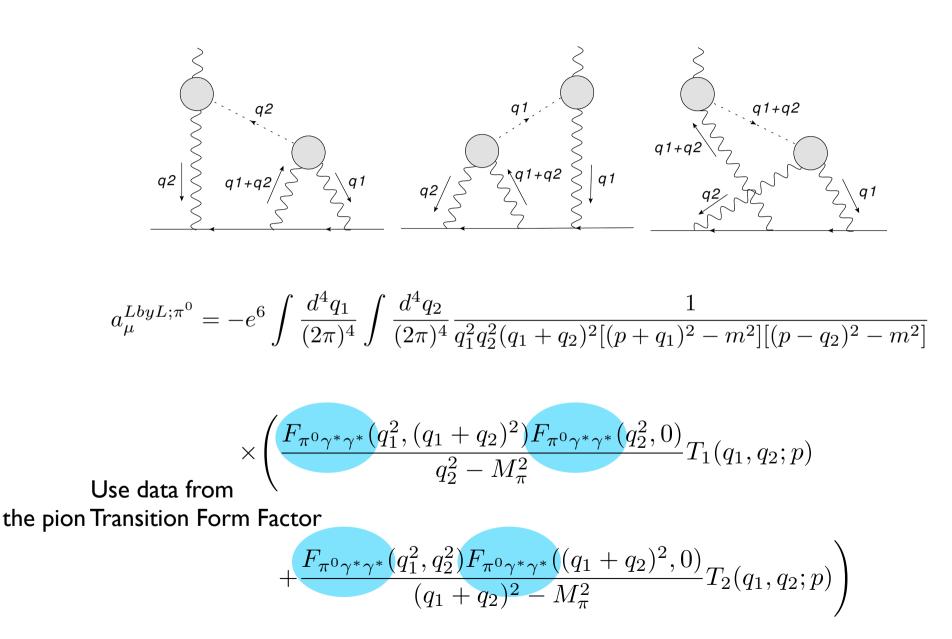
- Using CLEO, CELLO, BaBar and Belle to obtain the TFF Low-energy Constants, constrain hadronic model and estimation of π^0 -HLBL

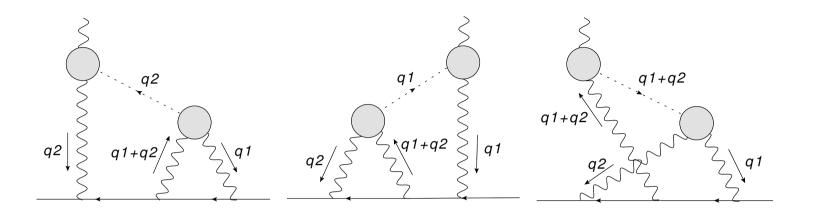
$$a_{\mu}^{HLBL;\pi^{0}} = e^{6} \int \frac{d^{4}Q_{1}}{(2\pi)^{4}} \int \frac{d^{4}Q_{2}}{(2\pi)^{4}} K(Q_{1}^{2}, Q_{2}^{2})$$
Using $F_{\pi^{0}\gamma^{*}\gamma^{*}}(Q_{1}^{2}, Q_{2}^{2}) \sim P_{1}^{0}(Q_{1}^{2}, Q_{2}^{2})$
(main energy range from 0 to 1 GeV²)
(using the hyperspherical approach developed in [Knecht and Nyffeler '01])

Extraction of meson TFF and HLBL

- Using CLEO, CELLO, BaBar and Belle to obtain the TFF Low-energy Constants, constrain hadronic model and estimation of π^0 -HLBL

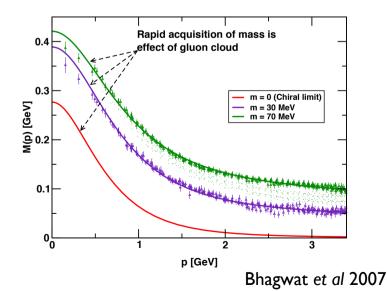






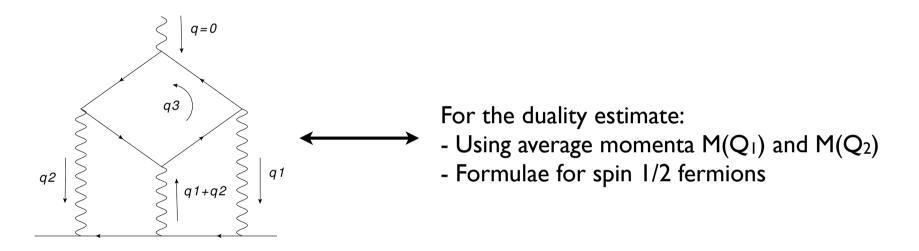
Obtain average momenta, thus $M(Q_1)$ and $M(Q_2)$

	$\langle Q_i angle$	$M(Q_i) { m GeV}$
$P_1^0(Q_1^2,Q_2^2)$	$\frac{Q_1+Q_2}{2}$ 0.358(8)	GeV $0.205(2)$
	$\sqrt{Q_1 Q_2} 0.323(7)$	GeV $0.216(2)$
$P_2^1(Q_1^2,Q_2^2)$	$\frac{Q_1+Q_2}{2}$ 0.358(11))GeV $0.205(3)$
	$\sqrt{Q_1 Q_2}$ 0.323(9)	GeV $0.216(3)$



Masjuan and Vanderhaeghen 2012

Duality argument between the hadronic degrees of freedom and the well-known quark loop contribution



$$a_{\mu}^{HLBL}(M(Q)) = \left(\frac{\alpha}{\pi}\right)^3 N_c \left(\sum_{q=u,d,s} Q_q^4\right) \left[\left(\frac{3}{2}\zeta(3) - \frac{19}{16}\right) \frac{m_{\mu}^2}{M(Q)^2} + \mathcal{O}\left(\frac{m_{\mu}^4}{M(Q)^4}\log^2\frac{m_{\mu}^2}{M(Q)^2}\right) \right]$$

Laporta and Remiddi 1996

Masjuan and Vanderhaeghen 2012

Duality argument between the hadronic degrees of freedom and the well-known quark loop contribution

$$a_{\mu}^{HLBL}(M(Q)) = \left(\frac{\alpha}{\pi}\right)^{3} N_{c} \left(\sum_{q=u,d,s} Q_{q}^{4}\right) \left[\left(\frac{3}{2}\zeta(3) - \frac{19}{16}\right) \frac{m_{\mu}^{2}}{M(Q)^{2}} + \mathcal{O}\left(\frac{m_{\mu}^{4}}{M(Q)^{4}}\log^{2}\frac{m_{\mu}^{2}}{M(Q)^{2}}\right) \right]$$

Masjuan and Vanderhaeghen 2012

Duality argument between the hadronic degrees of freedom and the well-known quark loop contribution

Ballpark prediction

		$\langle Q_i angle$	$M(Q_i)$ GeV	$a_{\mu}^{HLBL} \times 10^{10}$
$P_1^0(Q_1^2,Q_2^2)$	$\frac{Q_1+Q_2}{2}$	$0.358(8) \mathrm{GeV}$	0.205(2)	10.52(21)
	$\sqrt{Q_1Q_2}$	$0.323(7) { m GeV}$	0.216(2)	9.68(15)
$P_2^1(Q_1^2,Q_2^2)$	$\frac{Q_1+Q_2}{2}$	$0.358(11) \mathrm{GeV}$	0.205(3)	10.51(29)
	$\sqrt{Q_1Q_2}$	$0.323(9) { m GeV}$	0.216(3)	9.67(21)

Masjuan and Vanderhaeghen 2012

Ballpark prediction		$\langle Q_i angle$	$M(Q_i) { m GeV}$	$a_{\mu}^{HLBL} \times 10^{10}$	
	$P_1^0(Q_1^2,Q_2^2)$	$\frac{Q_1+Q_2}{2}$	$0.358(8) \mathrm{GeV}$	0.205(2)	10.52(21)
		$\sqrt{Q_1Q_2}$	$0.323(7) { m GeV}$	0.216(2)	9.68(15)
	$P_2^1(Q_1^2,Q_2^2)$	$\frac{Q_1+Q_2}{2}$	$0.358(11) \mathrm{GeV}$	0.205(3)	10.51(29)
		$\sqrt{Q_1Q_2}$	$0.323(9) \mathrm{GeV}$	0.216(3)	9.67(21)

Error estimation from:

- Exp data to build up FF: ~2% (smaller @BES-III)
- Error from approach at FF: 5%
- Departure from chiral limit: 15% (reduced when lattice at physical mass)
- Off-shellness is poorly known for π (not even the sign) and unknown for others, models for $\pi\text{-}TFF$ suggest ± 5%-10% effect.

$$a_{\mu}^{HLBL} = [8.2(1) \div 12.6(2)] \times 10^{-10}$$

Conclusions

- Review of g-2 factors
- Emphasis on Hadronic light-by-light:
 - HLBL: New estimated calculation

$$a_{\mu}^{HLBL} = [8.2(1) \div 12.6(2)] \times 10^{-10}$$

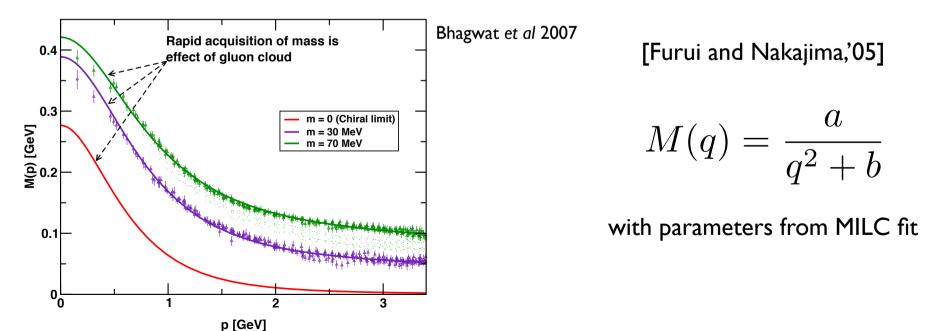
- the 3σ still persists:
 - indication of NP?
 - what about off-shellness?

Outlook

- Concerning the πTFF (with P. Sanchez):
 - we'll test our approach using $\ \pi^0
 ightarrow e^+ e^-$
- Concerning the running of the quark-mass (with V. Pascalutsa, V. Pauk and M. Vanderhaeghen):
 - instead of an averaged mass, numeric computation

Outlook

- Concerning the πTFF (with P. Sanchez):
 - we'll test our approach using $\ \pi^0
 ightarrow e^+ e^-$
- Concerning the running of the quark-mass (with V. Pascalutsa, V. Pauk and M. Vanderhaeghen):
 - instead of an averaged mass, numeric computation



Pere Masjuan, Trento, 11th April 2013

Thanks!

- Matching low- and high- energies
 - P.M., Sanchez-Puertas, in preparation Low-energy description + pQCD: determine the matching point

The QCD model [Noguera, Vento'12]:

- assume πDA flat at Q_0
- apply QCD evolution at high energies
- phenomenological model at low energies (VMD)
- how to determine Q_0 ?

- the authors fixed

 $Q_0^2 = 1 \mathrm{GeV}^2$

- Matching low- and high- energies
 - P.M., Sanchez-Puertas, in preparation Low-energy description + pQCD: determine the matching point

The QCD model [Noguera, Vento'12]:

- assume πDA flat at Q_0
- apply QCD evolution at high energies
- phenomenological model at low energies (VMD)
- how to determine Q_0 ?

Our approach:

- use the same pQCD
- at low energies $\longrightarrow P_3^2(Q^2)$
- determine Q_0 by matching
- Q_0 is fixed by data:

$$Q_0^2 = 5 \text{GeV}^2$$

- the authors fixed

 $Q_0^2 = 1 \mathrm{GeV}^2$

