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The anomalous magnetic moment of 
the muon

• gyromagnetic ratio: g

• Deviation from the Dirac value         is:

• BNL E821: 11659208.9±6.4 10-10

~µ = g
e

2m
· ~S

1

2
g = 2
g 6= 2

spin → Dirac theory:
QFT:

g = 2

aµ =
gµ � 2

2

Bennet et al, PRD73,072003 (2006)
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The anomalous magnetic moment of 
the muon

Ballpark prediction for the hadronic light-by-light contribution to the muon (g � 2)µ

Pere Masjuan⇤ and Marc Vanderhaeghen
Institut für Kernphysik, Johannes Gutenberg-Universität, D-55099 Mainz, Germany

(Dated: December 7, 2012)

Using the momentum dependence of the dressed quark mass and the well-known formulae for the
mass dependent quark loop contribution to the light-by-light scattering insertions, we compute the
hadronic light-by-light contribution to the the muon anomalous magnetic moment. We ascribe for
the first time a systematic error on the calculation.

PACS numbers: 13.40.Em,14.60.Ef

The anomalous magnetic moment of the muon is one
of the most accurately measured quantities in particle
physics. Any deviation from its prediction in the Stan-
dard Model of particle physics is a very promising signal
of new physics.

The present world average experimental value of its
deviation from the Dirac value, i.e., aµ = (gµ � 2)/2, is
given by aEXP

µ = 11659208.9(6.3) ⇥ 10�10 [1, 2]. This
impressive result is still limited by statistical errors, and
a proposal to measure the muon (g � 2)µ to a precision
of 1.6⇥ 10�10 has recently been submitted to FNAL [3].

At the level of the experimental accuracy, the QED
contributions to aµ from photons and leptons alone are
very well known. Recently the calculation has been com-
pleted up to the fifth order O(↵5

em) in the fine-structure
constant ↵em, giving the result 11658471.885(4)⇥ 10�10

[4].
The main uncertainties at present in the Standard

Model calculation for (g�2)µ originate from the hadronic
vacuum polarization (HVP) as well as hadronic light-
by-light scattering (HLBL) corrections. We show the
present estimates and their uncertainties for the QED,
HVP, HLBL, and the electroweak (EW) corrections in
Table I.

TABLE I. Standard Model contributions to (g � 2)µ.

Contribution Result in 10�10 units Ref.

QED(leptons) 11658471.885± 0.004 [4]

HVP(leading order) 692.3± 4.2 [5]

HVP(higher order) �9.84± 0.07 [6]

HLBL 11.6± 4.0 [7]

EW 15.4± 0.2 [8]

Total 11659181.3± 5.8

The existing discrepancy between the experimental
value for (g � 2)µ and its Standard Model prediction
stands at about 3�.

In order to interpret the upcoming new experiment at
FNAL, with an anticipated precision of 1.6⇥10�10, there

⇤
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is an urgent need to improve on both the HVP as well as
the HLBL contributions. The accuracy of the HVP con-
tribution depends on the statistical error of the experi-
mental data for the e+e� annihilation cross-section into
hadrons. With future experiments, in particular at BES-
III [9], one foresees this error to quantitatively decrease.
The HLBL cannot be directly related to any measur-
able cross section however, and requires the knowledge
of Quantum Chromodynamics (QCD) contributions at
all energy scales. Since this is not known yet, one needs
to rely on hadronic models to compute it. Such models
introduce some systematic errors which are di�cult to
quantify.
The main motivation of this work is to provide a ball-

park prediction with a judicious error estimate for the
HLBL scattering based on a duality argument between
the hadronic degrees of freedom and the well-known
quark loop contribution.
Such a duality estimate can be obtained by invoking a

particular regime of QCD where one knows how to per-
form the quark loop integral responsible for the aHLBL

µ

(Fig. 1). This is the large-Nc of QCD [10, 11] where a
quark-hadron duality is accounted for considering that
hadronic amplitudes are described by an infinite set of
non-interacting and non-decaying resonances. As shown
in Ref. [12, 13], the large-Nc limit provides a very useful
framework to approach this problem.
Using the large-Nc counting and also the chiral count-

ing, it was proposed in [12] to split the diagram of Fig. 1
into a set of di↵erent contributions where the numerically
dominant contribution arises from the pseudo-scalar ex-
change diagram shown in Fig. 2 [7].
The large-Nc approach however has two shortcomings:

firstly, the assumption of pion-exchange dominance im-
plies that the remaining pieces are small enough to justify
their omission. Although this seems reasonable [13], it
might lead to an underestimation of the error. Secondly,
calculations carried out in the large-Nc limit demand an
infinite set of resonances for computing any quantity. As
such sum is not known in practice, one ends up truncating
the spectral function in a resonance saturation scheme,
the so-called Minimal Hadronic Approximation [14]. The
resonance masses used in each calculation are then taken
as the physical ones from PDG [15] instead of the cor-
responding masses in the large-Nc limit. Both problems
might lead to large systematic errors not included so far

Kinoshita et al 2012
Davier et al 2011

Hagiwara et al 2009

Jegerlehner and Nyffeler 2009

Czarnecki et al 2003

Anomalous magnetic moment aμ (anomaly):

athµ = aQED
µ + aweak

µ + ahadµgµ = 2

✓
1 + aµ =

↵

2⇡
+ · · ·

◆
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The anomalous magnetic moment of 
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Anomalous magnetic moment aμ (anomaly):

New g-2 experiment at Fermilab with error 
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Using the momentum dependence of the dressed quark mass and the well-known formulae for the
mass dependent quark loop contribution to the light-by-light scattering insertions, we compute the
hadronic light-by-light contribution to the the muon anomalous magnetic moment. We ascribe for
the first time a systematic error on the calculation.
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The anomalous magnetic moment of the muon is one
of the most accurately measured quantities in particle
physics. Any deviation from its prediction in the Stan-
dard Model of particle physics is a very promising signal
of new physics.

The present world average experimental value of its
deviation from the Dirac value, i.e., aµ = (gµ � 2)/2, is
given by aEXP

µ = 11659208.9(6.3) ⇥ 10�10 [1, 2]. This
impressive result is still limited by statistical errors, and
a proposal to measure the muon (g � 2)µ to a precision
of 1.6⇥ 10�10 has recently been submitted to FNAL [3].

At the level of the experimental accuracy, the QED
contributions to aµ from photons and leptons alone are
very well known. Recently the calculation has been com-
pleted up to the fifth order O(↵5

em) in the fine-structure
constant ↵em, giving the result 11658471.885(4)⇥ 10�10

[4].
The main uncertainties at present in the Standard

Model calculation for (g�2)µ originate from the hadronic
vacuum polarization (HVP) as well as hadronic light-
by-light scattering (HLBL) corrections. We show the
present estimates and their uncertainties for the QED,
HVP, HLBL, and the electroweak (EW) corrections in
Table I.

TABLE I. Standard Model contributions to (g � 2)µ.

Contribution Result in 10�10 units Ref.

QED(leptons) 11658471.885± 0.004 [4]

HVP(leading order) 692.3± 4.2 [5]

HVP(higher order) �9.84± 0.07 [6]

HLBL 11.6± 4.0 [7]

EW 15.4± 0.2 [8]

Total 11659181.3± 5.8

The existing discrepancy between the experimental
value for (g � 2)µ and its Standard Model prediction
stands at about 3�.

In order to interpret the upcoming new experiment at
FNAL, with an anticipated precision of 1.6⇥10�10, there
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is an urgent need to improve on both the HVP as well as
the HLBL contributions. The accuracy of the HVP con-
tribution depends on the statistical error of the experi-
mental data for the e+e� annihilation cross-section into
hadrons. With future experiments, in particular at BES-
III [9], one foresees this error to quantitatively decrease.
The HLBL cannot be directly related to any measur-
able cross section however, and requires the knowledge
of Quantum Chromodynamics (QCD) contributions at
all energy scales. Since this is not known yet, one needs
to rely on hadronic models to compute it. Such models
introduce some systematic errors which are di�cult to
quantify.
The main motivation of this work is to provide a ball-

park prediction with a judicious error estimate for the
HLBL scattering based on a duality argument between
the hadronic degrees of freedom and the well-known
quark loop contribution.
Such a duality estimate can be obtained by invoking a

particular regime of QCD where one knows how to per-
form the quark loop integral responsible for the aHLBL

µ

(Fig. 1). This is the large-Nc of QCD [10, 11] where a
quark-hadron duality is accounted for considering that
hadronic amplitudes are described by an infinite set of
non-interacting and non-decaying resonances. As shown
in Ref. [12, 13], the large-Nc limit provides a very useful
framework to approach this problem.
Using the large-Nc counting and also the chiral count-

ing, it was proposed in [12] to split the diagram of Fig. 1
into a set of di↵erent contributions where the numerically
dominant contribution arises from the pseudo-scalar ex-
change diagram shown in Fig. 2 [7].
The large-Nc approach however has two shortcomings:

firstly, the assumption of pion-exchange dominance im-
plies that the remaining pieces are small enough to justify
their omission. Although this seems reasonable [13], it
might lead to an underestimation of the error. Secondly,
calculations carried out in the large-Nc limit demand an
infinite set of resonances for computing any quantity. As
such sum is not known in practice, one ends up truncating
the spectral function in a resonance saturation scheme,
the so-called Minimal Hadronic Approximation [14]. The
resonance masses used in each calculation are then taken
as the physical ones from PDG [15] instead of the cor-
responding masses in the large-Nc limit. Both problems
might lead to large systematic errors not included so far
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plies that the remaining pieces are small enough to justify
their omission. Although this seems reasonable [13], it
might lead to an underestimation of the error. Secondly,
calculations carried out in the large-Nc limit demand an
infinite set of resonances for computing any quantity. As
such sum is not known in practice, one ends up truncating
the spectral function in a resonance saturation scheme,
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Hadronic light-by-light (LbyL) scattering in the muon g � 2

Need to calculate higher order O(↵3) hadronic contribution to the muon g � 2:
k

µ−(p)µ−(p’)

k = p’ − p

Four-point function hVVVV i projected onto the aµ (soft external photon k ! 0).

Look at “underlying” hadronic Green’s function hVVVV i in QCD (all photon legs
o↵-shell). Can evaluate it in quark-gluon or hadronic picture (global duality), e.g. for
u, d quark sector:

+ + + + · · ·

! + + · · · + + · · ·

| {z }
L.D.

| {z }
S.D.

⇡0

⇡±

u, d

u, d

g

Usually, one uses some hadronic model at low energies (L.D. = long-distances) with
exchanges of resonances and loops of resonances and some form of (dressed) “quark
loop” at high energies (S.D. = short-distances).
Since the four-point function hVVVV i depends on several invariant momenta, the
distinction between low and high energies is not as easy as for two-point function
hVV i (hadronic vacuum polarization).

Hadronic light-by-light (LbyL) scattering in the muon g � 2

Need to calculate higher order O(↵3) hadronic contribution to the muon g � 2:
k

µ−(p)µ−(p’)

k = p’ − p

Four-point function hVVVV i projected onto the aµ (soft external photon k ! 0).

Look at “underlying” hadronic Green’s function hVVVV i in QCD (all photon legs
o↵-shell). Can evaluate it in quark-gluon or hadronic picture (global duality), e.g. for
u, d quark sector:

+ + + + · · ·

! + + · · · + + · · ·

| {z }
L.D.

| {z }
S.D.

⇡0

⇡±

u, d

u, d

g

Usually, one uses some hadronic model at low energies (L.D. = long-distances) with
exchanges of resonances and loops of resonances and some form of (dressed) “quark
loop” at high energies (S.D. = short-distances).
Since the four-point function hVVVV i depends on several invariant momenta, the
distinction between low and high energies is not as easy as for two-point function
hVV i (hadronic vacuum polarization).

Hadronic light-by-light scattering in the muon g-2 

order O(α3) hadronic contribution

Model at low energies
(with exchange of resonances)

Model at high energies
(quark-loop)
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Classification proposal by Eduardo de Rafael ’94

Chiral Perturbation Theory counting (p2)+large-Nc counting

Current approach to had. LbyL scattering
Classification of de Rafael ’94

Use chiral counting p2, derived from Chiral Perturbation Theory, and large-NC

counting as guideline to classify contributions (in general, all higher orders in p2 and
NC will contribute):

k

µ−(p)µ−(p’)

k = p’ − p

=
ρ

π
+

+

π , η, η0 ,

+

Exchange of
other reso-
nances
(f0, a1, . . .)

+
ρ

Q

Chiral counting: p4 p6 p8 p8

NC -counting: 1 NC NC NC

Relevant scales in hVVVV i (o↵-shell !): 0� 2 GeV, i.e. much larger than mµ ! No
direct relation to exp. data, in contrast to hadronic vacuum polarization in g � 2
! need hadronic (resonance) model (or lattice QCD)

Reduce model dependence by imposing experimental and theoretical constraints on
form factors and hVVVV i, e.g. from QCD short-distances (operator product expansion
(OPE)) to get better matching with perturbative QCD for high momenta

de Rafael ’94: last diagram can be interpreted as irreducible contribution to 4-point
function hVVVV i. Appears as short-distance complement of low-energy had. models

Pseudoscalars: numerically dominant contribution (according to most models !)

Exchange of lightest state ⇡0 yields largest contribution ! warrants special attention

Pesudoscalars: numerically dominant contribution (according to most models)

Pere Masjuan, Trento, 11th April 2013



Had. LbyL scattering: Summary of selected results
k

µ−(p)µ−(p’)

k = p’ − p

=
ρ

π
+

+

π , η, η0 ,

+

Exchange of
other reso-
nances
(f0, a1, . . .)

+
ρ

Q

Chiral counting: p4 p6 p8 p8

NC -counting: 1 NC NC NC

Contribution to aµ ⇥ 1011:

BPP: +83 (32)
HKS: +90 (15)
KN: +80 (40)
MV: +136 (25)
2007: +110 (40)
PdRV:+105 (26)
N,JN: +116 (40)
GFW: +217 (91)
GdR: +150 (3)

-19 (13)
-5 (8)

0 (10)

-19 (19)
-19 (13)

ud.: -45

+85 (13)
+83 (6)
+83 (12)

+114 (10)

+114 (13)
+99 (16)
+81 (12)
+68 (3)

ud.: +1

-4 (3) [f0, a1]
+1.7 (1.7) [a1]

+22 (5) [a1]

+8 (12) [f0, a1]
+15 (7) [f0, a1]

+21 (3)
+10 (11)

0

+2.3 [c-quark]
+21 (3)

+136 (59)
+82 (6)

ud.: +60

ud. = undressed, i.e. point vertices without form factors

BPP = Bijnens, Pallante, Prades ’96, ’02; HKS = Hayakawa, Kinoshita, Sanda ’96, ’98, ’02;
KN = Knecht, Ny↵eler ’02; MV = Melnikov, Vainshtein ’04; 2007 = Bijnens, Prades; Miller, de
Rafael, Roberts; PdRV = Prades, de Rafael, Vainshtein ’09; N,JN = Ny↵eler ’09; Jegerlehner,
Ny↵eler ’09; GFW = Goecke, Fischer, Williams ’11 (total includes estimate of “other
contributions” = 0 (20)); GdR = Greynat, de Rafael ’12 (given error only reflects variation
MQ = 240± 10 MeV, estimated 20%-30% systematic error)

Recall (in units of 10�11): �aµ(had. VP) ⇡ 45; �aµ(exp [BNL]) = 63; �aµ(future exp) = 15

Pere Masjuan, Trento, 11th April 2013

[from A. Nyffeler 2012]



Ballpark prediction for HLBL

q = 0

q1q2
q1+q2

q3

P.M and M. Vanderhaeghen 2012

Hadronic light-by-light (LbyL) scattering in the muon g � 2

Need to calculate higher order O(↵3) hadronic contribution to the muon g � 2:
k

µ−(p)µ−(p’)

k = p’ − p

Four-point function hVVVV i projected onto the aµ (soft external photon k ! 0).

Look at “underlying” hadronic Green’s function hVVVV i in QCD (all photon legs
o↵-shell). Can evaluate it in quark-gluon or hadronic picture (global duality), e.g. for
u, d quark sector:

+ + + + · · ·

! + + · · · + + · · ·

| {z }
L.D.

| {z }
S.D.

⇡0

⇡±

u, d

u, d

g

Usually, one uses some hadronic model at low energies (L.D. = long-distances) with
exchanges of resonances and loops of resonances and some form of (dressed) “quark
loop” at high energies (S.D. = short-distances).
Since the four-point function hVVVV i depends on several invariant momenta, the
distinction between low and high energies is not as easy as for two-point function
hVV i (hadronic vacuum polarization).

Duality argument between the hadronic degrees of 
freedom and the well-known quark loop contribution
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Ballpark prediction for HLBL

q = 0

q1q2
q1+q2

q3

Duality argument between the hadronic degrees of 
freedom and the well-known quark loop contribution

For the duality estimate:
- quark: running momentum dependent mass
- use lattice calculation
(extrapolated at chiral limit using 
 Dyson-Schwinger equation framework)

0 1 2 3
p [GeV]

0

0.1

0.2

0.3

0.4

M
(p

) [
G

eV
] m = 0 (Chiral limit)

m = 30 MeV
m = 70 MeV

effect of gluon cloud
Rapid acquisition of mass is

Figure 1: Dressed-quark mass function, M(p): solid curves – DSE results, obtained as
explained in Refs. [11, 33], “data” – numerical simulations of unquenched lattice-QCD [34].
In this figure, adapted from Ref. [35], one observes the current-quark of perturbative QCD
evolving into a constituent-quark as its momentum becomes smaller. The constituent-quark
mass arises from a cloud of low-momentum gluons attaching themselves to the current-
quark. This is dynamical chiral symmetry breaking: an essentially nonperturbative effect
that generates a quark mass from nothing ; namely, it occurs even in the chiral limit.

3 Dynamical Chiral Symmetry Breaking

Many statements of fact can be made in connection with this emergent phenomenon. For example,
DCSB explains the origin of constituent-quark masses and underlies the success of chiral effective field
theory. Understanding DCSB within QCD proceeds from the renormalised gap equation [32]:

S(p)−1 = Z2 (iγ · p + mbm) + Z1

∫ Λ

q

g2Dµν(p − q)
λa

2
γµS(q)Γa

ν(q, p), (18)

where
∫ Λ

q
represents a Poincaré invariant regularisation of the integral, with Λ the regularisation mass-

scale, Dµν is the renormalised dressed-gluon propagator, Γν is the renormalised dressed-quark-gluon
vertex, and mbm is the quark’s Λ-dependent bare current-mass. The vertex and quark wave-function
renormalisation constants, Z1,2(ζ2, Λ2), depend on the gauge parameter.

The form of the solution to Eq. (18) is the same as that written in Eq. (8) except that in QCD one
must account for the renormalisation point dependence:

S(p) = −iγ · p σV (p2, ζ2) + σS(p2, ζ2) =
1

iγ · p A(p2, ζ2) + B(p2, ζ2)
=

Z(p2, ζ2)

iγ · p + M(p2)
. (19)

It is important that the mass function, M(p2) = B(p2, ζ2)/A(p2, ζ2), illustrated in Fig. 1, is independent
of the renormalisation point, ζ . The dressed propagator is obtained from Eq. (18) augmented by the

6

Bhagwat et al 2007

P.M and M. Vanderhaeghen 2012
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Ballpark prediction for HLBL

q = 0

q1q2
q1+q2

q3

Duality argument between the hadronic degrees of 
freedom and the well-known quark loop contribution

For the duality estimate:
- quark: running momentum dependent mass
- use lattice calculation
(extrapolated at chiral limit using 
 Dyson-Schwinger equation framework)
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Figure 1: Dressed-quark mass function, M(p): solid curves – DSE results, obtained as
explained in Refs. [11, 33], “data” – numerical simulations of unquenched lattice-QCD [34].
In this figure, adapted from Ref. [35], one observes the current-quark of perturbative QCD
evolving into a constituent-quark as its momentum becomes smaller. The constituent-quark
mass arises from a cloud of low-momentum gluons attaching themselves to the current-
quark. This is dynamical chiral symmetry breaking: an essentially nonperturbative effect
that generates a quark mass from nothing ; namely, it occurs even in the chiral limit.

3 Dynamical Chiral Symmetry Breaking

Many statements of fact can be made in connection with this emergent phenomenon. For example,
DCSB explains the origin of constituent-quark masses and underlies the success of chiral effective field
theory. Understanding DCSB within QCD proceeds from the renormalised gap equation [32]:

S(p)−1 = Z2 (iγ · p + mbm) + Z1

∫ Λ

q

g2Dµν(p − q)
λa

2
γµS(q)Γa

ν(q, p), (18)

where
∫ Λ

q
represents a Poincaré invariant regularisation of the integral, with Λ the regularisation mass-

scale, Dµν is the renormalised dressed-gluon propagator, Γν is the renormalised dressed-quark-gluon
vertex, and mbm is the quark’s Λ-dependent bare current-mass. The vertex and quark wave-function
renormalisation constants, Z1,2(ζ2, Λ2), depend on the gauge parameter.

The form of the solution to Eq. (18) is the same as that written in Eq. (8) except that in QCD one
must account for the renormalisation point dependence:

S(p) = −iγ · p σV (p2, ζ2) + σS(p2, ζ2) =
1

iγ · p A(p2, ζ2) + B(p2, ζ2)
=

Z(p2, ζ2)

iγ · p + M(p2)
. (19)

It is important that the mass function, M(p2) = B(p2, ζ2)/A(p2, ζ2), illustrated in Fig. 1, is independent
of the renormalisation point, ζ . The dressed propagator is obtained from Eq. (18) augmented by the

6
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what momentum?

P.M and M. Vanderhaeghen 2012
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Ballpark prediction for HLBL

Duality argument between the hadronic degrees of 
freedom and the well-known quark loop contribution

For the duality estimate:
- use ChPT and large-Nc counting 
  [de Rafael ’94]
- dominant piece: PS exchange
  (suggested by most models)

q1q1+q2

q2

q2 q1

q1

q1+q2
q2 q1

q1+q2

q1+q2

q2

Obtain average momenta M(Q1) and M(Q2)

q = 0

q1q2
q1+q2

q3

P.M and M. Vanderhaeghen 2012
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aLbyL;⇡0
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Z
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Z
d4q2
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q21q
2
2(q1 + q2)2[(p+ q1)2 �m2][(p� q2)2 �m2]

⇥
 
F⇡0�⇤�⇤(q21 , (q1 + q2)2)F⇡0�⇤�⇤(q22 , 0)

q22 �M2
⇡
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+
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2
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⇡
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!

Dissection of the HLBL contribution
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q2 q1
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(using the hyperspherical approach developed in [Knecht and Nyffeler ’01])
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⇡
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Dissection of the HLBL contribution
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Use data from
the π-Transition Form Factor

Pere Masjuan, Trento, 11th April 2013

(using the hyperspherical approach developed in [Knecht and Nyffeler ’01])



Dissection of the HLBL contribution
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Dissection of the HLBL contribution
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• Extraction of meson TFF (example π0) 

- Using CLEO, CELLO, BaBar and Belle to obtain the TFF Low-energy 
Constants, constrain hadronic model and estimation of π0-HLBL

F⇡0�⇤�(Q
2, 0) = a0(1 + a⇡

Q2

m2
⇡

+ b⇡
Q4

m4
⇡

+ ...)

P.M, PRD86,094021,2012
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Using Padé Approximants
(a la BL’80, with correct fall-off at high Q2)

Dissection of the HLBL contribution

P 0
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• Extraction of meson TFF (example π0) 

- Using CLEO, CELLO, BaBar and Belle to obtain the TFF Low-energy 
Constants, constrain hadronic model and estimation of π0-HLBL

F⇡0�⇤�(Q
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P.M, PRD86,094021,2012
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Dissection of the HLBL contribution
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• Extraction of meson TFF (example π0) 

- Using CLEO, CELLO, BaBar and Belle to obtain the TFF Low-energy 
Constants, constrain hadronic model and estimation of π0-HLBL
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Dissection of the HLBL contribution

by reexpansion we find a⇡, b⇡

P 0
1 (Q

2), P 1
2 (Q

2), P 2
3 (Q

2), ...

b⇡ = 1.06(9)stat(25)sys

a⇡ = 0.0324(12)stat(19)sys

to be compared with:

•ChPT:
•Dalitz decay:
•Regge theory:
•Ads/QCD:

a⇡ = 0.032(1) [Arriola,Broniowski ‘10]

a⇡ = 0.036 [Bijnens,Bramon,Cornet’90]

a⇡ = 0.029(5) [Kampf,Knecht,Novotny ’06]

[Grigoryan,Radyushkin ’08]a⇡ = 0.031
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• Extraction of meson TFF (example π0) 

- Using CLEO, CELLO, BaBar and Belle to obtain the TFF Low-energy 
Constants, constrain hadronic model and estimation of π0-HLBL
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+ b⇡
Q4
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+ ...)

Dissection of the HLBL contribution

b⇡ = 1.06(9)stat(25)sys

a⇡ = 0.0324(12)stat(19)sys
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• Extraction of meson TFF and HLBL

- Using CLEO, CELLO, BaBar and Belle to obtain the TFF Low-energy 
Constants, constrain hadronic model and estimation of π0-HLBL

Dissection of the HLBL contribution
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(main energy range from 0 to 1 GeV2)
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(using the hyperspherical approach 
developed in [Knecht and Nyffeler ’01])
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• Extraction of meson TFF and HLBL

- Using CLEO, CELLO, BaBar and Belle to obtain the TFF Low-energy 
Constants, constrain hadronic model and estimation of π0-HLBL

Systematic error from approach: 

Dissection of the HLBL contribution
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(main energy range from 0 to 1 GeV2)

5%vs

(convergence guaranteed by Pomerenke’s theorem) [P.M.,S.Peris,’07]
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Dissection of the HLBL contribution
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Obtain average momenta, thus M(Q1) and M(Q2)
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Figure 1: Dressed-quark mass function, M(p): solid curves – DSE results, obtained as
explained in Refs. [11, 33], “data” – numerical simulations of unquenched lattice-QCD [34].
In this figure, adapted from Ref. [35], one observes the current-quark of perturbative QCD
evolving into a constituent-quark as its momentum becomes smaller. The constituent-quark
mass arises from a cloud of low-momentum gluons attaching themselves to the current-
quark. This is dynamical chiral symmetry breaking: an essentially nonperturbative effect
that generates a quark mass from nothing ; namely, it occurs even in the chiral limit.

3 Dynamical Chiral Symmetry Breaking

Many statements of fact can be made in connection with this emergent phenomenon. For example,
DCSB explains the origin of constituent-quark masses and underlies the success of chiral effective field
theory. Understanding DCSB within QCD proceeds from the renormalised gap equation [32]:

S(p)−1 = Z2 (iγ · p + mbm) + Z1

∫ Λ

q

g2Dµν(p − q)
λa

2
γµS(q)Γa

ν(q, p), (18)

where
∫ Λ

q
represents a Poincaré invariant regularisation of the integral, with Λ the regularisation mass-

scale, Dµν is the renormalised dressed-gluon propagator, Γν is the renormalised dressed-quark-gluon
vertex, and mbm is the quark’s Λ-dependent bare current-mass. The vertex and quark wave-function
renormalisation constants, Z1,2(ζ2, Λ2), depend on the gauge parameter.

The form of the solution to Eq. (18) is the same as that written in Eq. (8) except that in QCD one
must account for the renormalisation point dependence:

S(p) = −iγ · p σV (p2, ζ2) + σS(p2, ζ2) =
1

iγ · p A(p2, ζ2) + B(p2, ζ2)
=

Z(p2, ζ2)

iγ · p + M(p2)
. (19)

It is important that the mass function, M(p2) = B(p2, ζ2)/A(p2, ζ2), illustrated in Fig. 1, is independent
of the renormalisation point, ζ . The dressed propagator is obtained from Eq. (18) augmented by the

6
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Ballpark prediction for HLBL
Masjuan and Vanderhaeghen 2012

Duality argument between the hadronic degrees of 
freedom and the well-known quark loop contribution

For the duality estimate:
- Using average momenta M(Q1) and M(Q2)
- Formulae for spin 1/2 fermions
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Ballpark prediction for HLBL
Masjuan and Vanderhaeghen 2012

Duality argument between the hadronic degrees of 
freedom and the well-known quark loop contribution
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Ballpark prediction for HLBL
Masjuan and Vanderhaeghen 2012

Duality argument between the hadronic degrees of 
freedom and the well-known quark loop contribution

Ballpark prediction
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Ballpark prediction for HLBL
Masjuan and Vanderhaeghen 2012

Error estimation from:
- Exp data to build up FF: ~2% (smaller @BES-III)
- Error from approach at FF: 5%
- Departure from chiral limit: 15% (reduced when lattice at physical mass)
- Off-shellness is poorly known for π (not even the sign) and unknown for 
others, models for π-TFF suggest ± 5%-10% effect.

Ballpark prediction
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Conclusions

• Review of g-2 factors

• Emphasis on Hadronic light-by-light:

• HLBL: New estimated calculation

• the 3σ still persists:

• indication of NP?

• what about off-shellness?
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Outlook

• Concerning the πTFF (with P. Sanchez):

• we’ll test our approach using 

• Concerning the running of the quark-mass (with V. 

Pascalutsa, V. Pauk and M. Vanderhaeghen):

• instead of an averaged mass, numeric computation 
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M(q) =
a

q2 + b

with parameters from MILC fit

[Furui and Nakajima,’05]
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Figure 1: Dressed-quark mass function, M(p): solid curves – DSE results, obtained as
explained in Refs. [11, 33], “data” – numerical simulations of unquenched lattice-QCD [34].
In this figure, adapted from Ref. [35], one observes the current-quark of perturbative QCD
evolving into a constituent-quark as its momentum becomes smaller. The constituent-quark
mass arises from a cloud of low-momentum gluons attaching themselves to the current-
quark. This is dynamical chiral symmetry breaking: an essentially nonperturbative effect
that generates a quark mass from nothing ; namely, it occurs even in the chiral limit.

3 Dynamical Chiral Symmetry Breaking

Many statements of fact can be made in connection with this emergent phenomenon. For example,
DCSB explains the origin of constituent-quark masses and underlies the success of chiral effective field
theory. Understanding DCSB within QCD proceeds from the renormalised gap equation [32]:

S(p)−1 = Z2 (iγ · p + mbm) + Z1

∫ Λ

q

g2Dµν(p − q)
λa

2
γµS(q)Γa

ν(q, p), (18)

where
∫ Λ

q
represents a Poincaré invariant regularisation of the integral, with Λ the regularisation mass-

scale, Dµν is the renormalised dressed-gluon propagator, Γν is the renormalised dressed-quark-gluon
vertex, and mbm is the quark’s Λ-dependent bare current-mass. The vertex and quark wave-function
renormalisation constants, Z1,2(ζ2, Λ2), depend on the gauge parameter.

The form of the solution to Eq. (18) is the same as that written in Eq. (8) except that in QCD one
must account for the renormalisation point dependence:

S(p) = −iγ · p σV (p2, ζ2) + σS(p2, ζ2) =
1

iγ · p A(p2, ζ2) + B(p2, ζ2)
=

Z(p2, ζ2)

iγ · p + M(p2)
. (19)

It is important that the mass function, M(p2) = B(p2, ζ2)/A(p2, ζ2), illustrated in Fig. 1, is independent
of the renormalisation point, ζ . The dressed propagator is obtained from Eq. (18) augmented by the
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Thanks!
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• Matching low- and high- energies

- Low-energy description + pQCD: determine the matching point
P.M., Sanchez-Puertas, in preparation

Dissection of the HLBL contribution

Pere Masjuan, Bonn, 29th Jan 2013

The QCD model [Noguera,Vento’12]:
- assume πDA flat at Q0

- apply QCD evolution at high energies
- phenomenological model at low energies (VMD)

- how to determine Q0?

Q2
0 = 1GeV2

- the authors fixed 
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TABLE I. Pseudoscalar Transition Form Factor results from the fit to experimental data.

⇡TFF ⌘TFF ⌘

0
TFF

N a

⇡

b

⇡

⇥ 10�3
�

2
/dof N a

⌘

b

⌘

�

2
/dof N a

⌘

0
b

⌘

0
�

2
/dof

P [N, 1] 5 0.0340(35) 1.20(28) 0.79 5 0.569(60) 0.328(77) 0.90 5 1.28(10) 1.66(30) 0.98

P [N, 2] 1 0.0324(20) 1.07(15) 0.76 1 0.545(25) 0.299(28) 0.83 0 1.24(3) 1.52(7) 0.94

P [N,N + 1] 2 0.0331(45) 1.11(27) 0.76 1 0.545(25) 0.299(27) 0.83 0 1.23(3) 1.52(7) 0.91

P

0[N,N + 1] 2 0.0332(25) 1.13(19) 0.77 1 0.518(53) 0.286(61) 1.32 1 1.24(3) 1.54(7) 0.94

PT [N, 1] 5 0.0302(28) 0.92(18) 0.82 5 0.545(57) 0.302(63) 0.90 5 1.27(9) 1.83(36) 0.97

Final 0.0324(12) 1.06(9) 0.544(20) 0.300(23) 1.24(2) 1.54(5)

use the PA(2, 3), though using di↵erent approximates
lead to similar results, since at low energies they are
quite similar. We find that at scales Q0 � p

3 GeV,
�

2
dof

< 1. The case for Q0 =
p
5 GeV is illustrated

in Fig. 5. For this value we obtain M = 0.813(37)
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FIG. 5. Data described in Fig. 1. Our matching with model
from Ref. [23] with the PA(2, 3) at Q0 =

p
5 GeV is shown

in black, with error bands at 68% CL in blue. The result is
compared to the PA(2, 3) in orange-dashed. This matching
gives �2

dof

= 0.88.

and C3 = 0.109(15), which are higher than those
quoted in the article. In general these values increase
with increasing matching point. To give a rough idea,
they range from M = (0.743(48) � 0.901(38)) GeV,
C3 = (0.070(14) � 0.161(25)) GeV3 in the
Q0 =(

p
3 � p

10) GeV range. It worths to point
that the values quieted for M depends on the correction
Q

2-dependence.

Hence, our results point towards higher values for
the parameters M,C3 than those pointed by [23],
what means, stronger e↵ects from non-pQCD which
are encoded in the C3 parameter. Finally, due to the
fact that Gegenbauer momenta a

n

predicted by this
models are relatively big, and their contribution vanish
logarithmically, the asymptotic behavior is not reached
until very high energies. Hence, some measurement
at higher scales (Q2

> 60) GeV2 is able to test this model.

B. Light-Cone approach

The authors in Ref. [24] adopt the light-cone for-
malism to estimate the ⇡DA. Their model has the
advantage that they are able to estimate the non-valence
part contribution at low Q

2, while they need some
model for this part at higher Q

2 (for this they choose
a function which is equivalent to a PA(0, 2), which
value and derivative at Q

2 = 0 matches the low energy
description). In particular, their model gives finite
results in the limit Q

2 ! 0, so we would be able to get
some estimate for aLbyL

µ

as explained in the next section.

In their model, the ⇡DA includes an expansion in
terms of Gegenbauer polynomials, which coe�cients are
di↵erent from the Gegenbauer momenta since they have
additional x�dependence, where x is the momentum
fraction of the constituent quark in the pion. For their
model to be able to cross the asymptotic limit, they need
at least to include a second term in their Gegenbauer
expansion with coe�cient B. Then, the resulting free
parameters are B and the constituent quark mass m

q

,
the other parameters being determined by normalization
conditions. Then, good results are achieved for di↵erent
results for the B parameter by changing m

q

. We
wondered whether we could constrain the B and m

q

values based on previous results.

In principle, if the model reproduces correctly the
low Q

2 behavior, we may compare the values of the low
energy parameters (a

⇡

, b

⇡

) obtained with these model.
Then, we could start with B = 0 and fix the only free
parameter m

q

requiring it gives a good result for a

⇡

.
This gives m

q

= 0.28(2) GeV. Then, we can consider
B, so in principle we can fix both, a

⇡

and b

⇡

. However,
it turns out that we are not able to find any values for
B, m

q

satisfying this constrains.
Consequently, we are not able to decide which are the
optimal values for these parameters. The best we can
do is fixing B and looking for the m

q

value which best
reproduces a

⇡

. In this way, we find that optimal values

The QCD model [Noguera,Vento’12]:
- assume πDA flat at Q0

- apply QCD evolution at high energies
- phenomenological model at low energies (VMD)

- how to determine Q0?

P 2
3 (Q

2)

Q2
0 = 5GeV2

Q2
0 = 1GeV2

- the authors fixed 

Our approach:
- use the same pQCD
- at low energies 
- determine Q0 by matching
- Q0 is fixed by data: 


