Looking for the Phase Interference between strong and EM in J/ ψ decays

Yadi Wang (on behalf of BESIII-LNF(INFN) group) 2013-04-10

Outline

- Motivation
- A brief introduction on BESIII.
- Analysis on J/ ψ decays to $\mu^+\mu^-$, $2(\pi^+\pi^-)$ and $2(\pi^+\pi^-)\pi^0$.
- Summary

J/ψ Strong and Electromagnetic Decay Amplitudes

Resonant contributions $\Gamma_{I/\Psi} \sim 93 \text{KeV} \rightarrow p \text{QCD}$

pQCD: both amplitudes almost real ^[1,2] QCD does not provide sizeable imaginary

amplitudes $\rightarrow \phi \sim 10^{\circ}$ ^[1]

 A_{γ} and A_{3g} must interfere ($\phi \sim 0^{\circ}$ /180°)

Experimental results:

 $J/\psi \rightarrow NN (\frac{1}{2}+\frac{1}{2}) \phi = 89^{\circ} \pm 9^{\circ}$ $J/\psi \rightarrow VP (1^{\circ}0^{\circ}) \phi = 106^{\circ} \pm 10^{\circ}$ $J/\psi \rightarrow PP (0^{\circ}0^{\circ}) \phi = 89.6^{\circ} \pm 9.9^{\circ}$ $J/\psi \rightarrow VV (1^{\circ}1^{\circ}) \phi = 138^{\circ} \pm 37^{\circ}$

No interference?

[1] J. Bolz and P. Kroll, WU B 95-35.

[2] S.J. Brodsky, G.P. Lepage, S.F. Tuan, Phys. Rev. Lett. 59, 621 (1987).

2013/4/10

J/ψ Strong and Electromagnetic Decay Amplitudes

Take $J/\psi \rightarrow ppbar / nnbar as a result$

Initial-state isospin is 0, $A_{3g}(ppbar) = A_{3g}(nnbar)$.

Like magnetic moments, $A_{FM}(ppbar) = -A_{FM}(nnbar)$.

According to pQCD, $R = \frac{Br(J/\psi \to n\overline{n})}{Br(J/\psi \to p\overline{p})} = \left|\frac{A_{3g} + A_{\gamma}^{n}}{A_{3g} + A_{\gamma}^{p}}\right|^{2} = \frac{1}{2}$ $\begin{array}{c} A_{3g}, A_{\gamma} \in \Re\\ A_{3g} \perp A_{\gamma} \end{array}$ $R \le 1$ R ≈1

But the BR are almost equal according to BESIII^[1]:

 $BR(J/\psi \rightarrow ppbar) = (2.112 \pm 0.004 \pm 0.027) \cdot 10^{-3}$ $BR(J/\psi \rightarrow nnbar) = (2.07 \pm 0.01 \pm 0.14) \cdot 10^{-3}$

Suggests 90° phase

Measurement from J/ψ decays has assumptions.

[1] J.M. Bian, $J/\psi \rightarrow ppbar$ and $J/\psi \rightarrow nnbar$ measurement by BESIII, accepted for pubblication PRD

Expected Full Interferences in $e^+e^- \rightarrow \mu^+\mu^-/2(\pi^+\pi^-)$

• Due to leptonic decay or G-parity, only A_{γ} and $A_{\text{cont.}}$ contribute in $e^+e^- \rightarrow \mu^+\mu^-$ and $e^+e^- \rightarrow 2(\pi^+\pi^-)$

• Theoretical prediction when $\phi = 0^{\circ}$. An obvious dip below J/ψ .

The interference pattern between J/ψ→μ⁺μ⁻ and the non-resonant amplitudes has been firstly found @ SLAC [PRL 33,1406], BES-II [PLB 355,374] and KEDR [PLB 685,134].

ISR effect and energy spread of beam energy have been considered.

The BESIII Detector

Beam energy: 1.0 - 2.3 GeV Peak Luminosity: Design: 1×10^{33} cm⁻²s⁻¹ Achieved: 0.65×10^{33} cm⁻²s⁻¹

Datasets already got:2009: $106 \text{ M } \psi(2s)$ 4xCLEOc $225\text{ M } J/\psi$ 4xBESII2010-11: $2.9 \text{ fb}^{-1} \psi(3770)$ 3.5xCLEOC2011: $0.5 \text{ fb}^{-1} @ 4.01 \text{ GeV } (Ds, XYZ)$ 2012: $0.4 \text{ B } \psi(2S)$ $1.0 \text{ B } J/\psi$ and J/ψ lineshapefine scan for phase measurementR scan @ 2.4, 2.8, 3.4 GeV2011: 515 pb^{-1} @ 4260 MeV

Analysis on $e^+e^- \rightarrow \mu^+\mu^-$

- 2 good charged tracks:
 - |Rxy|<1cm, |Rz|<10cm;
 - $|\cos\theta| < 0.8$.
- No good neutral tracks in EMC:
 - 0<T<14 (x50 ns)
 - $E_{\gamma} > 25 \text{MeV} (|\cos \theta| < 0.8), E_{\gamma} > 50$ MeV (0.86< $|\cos \theta| < 0.92$)
 - θ_{γ} , charged < 10°.
- Vertex fit to impove the momentum resolution:

• $\chi^2_{vertex} < 100.$

• Veto e⁺e⁻:

- Each charged track has an energy deposit in EMC;
- E/p<0.25.
- Veto cosmic rays:
 - $\Delta T = |Tof(\mu^+) Tof(\mu^-)| < 0.5$
- Momentum window cut:
 - $|p_{\mu\pm}-p_{the}| < 3\sigma$

A dip just below J/ ψ peak, which is consistent with $\phi = 0^{\circ}$ case. RMCWG-ECT 2013/4/10

13

Analysis on $e^+e^- \rightarrow 2(\pi^+\pi^-)$

- 4 good charged tracks:
 - $|Rxy| \le 1$ cm, $|Rz| \le 10$ cm.
- Vertex fit to improve the momentum resolution.
- Veto bkg from γ-conversion (2(e⁺e⁻)):
 - All angles between π^+ and π^- , 10°< $\theta_{\pi+\pi-}$ <170°.
- Veto events which have multitracks:
 - Minimum angle between $(\pi^+\pi^-)$ pairs: $\theta(\pi^+\pi^-,\pi^+\pi^-) > 170^\circ$.

Distribution of total energy from J/ψ data.

Preliminary result

15

2013/4/10

A dip just below J/ ψ peak, which is consistent with $\phi=0^{\circ}$ case.

RMCWG-ECT

Analysis on $e^+e^- \rightarrow 2(\pi^+\pi^-)\pi^0$

- 4 good charged tracks:
 - |Rxy|<1cm, |Rz|<10cm.
- At least 2 good neutral tracks in EMC:
 - 0<T<14 (x50 ns);
 - $E_{\gamma} > 25 \text{MeV} (|\cos\theta| < 0.8),$ $E_{\gamma} > 50 \text{ MeV}$ $(0.86 < |\cos\theta| < 0.92)$
 - θ_{γ} , charged < 10°.
- PID for each charged track:
 - $\operatorname{prob}(\pi) > \operatorname{prob}(K)$
- Vertex fit:
 - $\chi^2_{vertex} < 100.$

- 3-C kinematic fit:
 - Loop all photons, choose the combination with the minimum $\chi^2_{3C}(<200)$.
- π^0 selection:
 - | M(γγ)-0.135 | <0.02 GeV/c2
 - $|\cos\theta (\pi^0)_{\text{decay}}| = \frac{|E_{\gamma 1} E_{\gamma 2}|}{p_{\pi^0}} < 0.9$

RMCWG-ECT

J/ ψ lineshape from $\omega \pi^+ \pi^-$ and ρ^\pm events

The possible interference between intermediate resonances may affect the J/ψ lineshape.

3120

2013/4/10

Ecm (MeV)

3100

consistent with $\phi = 90^{\circ}$.

RMCWG-ECT

Summary of J/ ψ lineshapes Different lineshapes $\rightarrow A_{3g}$ is perpendicular to A_{EM} ?

Next work

- More dedicate work on ISR;
- Precise evaluation of E_{cms} and of the correspondant uncertainties;
- Systematic errors studies;
- Fitting on the lineshapes to get the phase angle.
- Better understanding of the phase angle.
- More channels, i.e., $e+e-\rightarrow$ ppbar(under work by Marco Destefanis)/nnbar/ 6π

