Looking for the Phase Interference between strong and EM in J/ ψ decays

Yadi Wang
(on behalf of BESIII-LNF(INFN) group)
2013-04-10

Outline

- Motivation
- A brief introduction on BESIII.
- Analysis on J / ψ decays to $\mu^{+} \mu^{-}, 2\left(\pi^{+} \pi^{-}\right)$and $2\left(\pi^{+} \pi^{-}\right) \pi^{0}$.
- Summary

J/ Ψ Strong and Electromagnetic Decay Amplitudes

Resonant contributions

$$
\Gamma_{\mathrm{J} / \psi} \sim 93 \mathrm{KeV} \rightarrow \mathrm{pQCD}
$$

pQCD: both amplitudes almost real ${ }^{[1,2]}$ QCD does not provide sizeable imaginary amplitudes $\rightarrow \phi \sim 10^{\circ}{ }^{[1]}$
A_{γ} and $\mathrm{A}_{3 \mathrm{~g}}$ must interfere $\left(\phi \sim 0^{\circ} / 180^{\circ}\right.$
Experimental results:
$\mathrm{J} / \Psi \rightarrow \mathrm{NN}\left(1 / 2^{+1 / 2}\right) \phi=89^{\circ} \pm 9^{\circ}$
$\mathrm{J} / \psi \rightarrow \mathrm{VP}\left(1^{-} 0^{-}\right) \quad \phi=106^{\circ} \pm 10^{\circ}$
$\mathrm{J} / \psi \rightarrow \mathrm{PP}\left(0^{-} 0^{-}\right) \quad \phi=89.6^{\circ} \pm 9.9^{\circ}$
$\mathrm{J} / \psi \rightarrow \mathrm{VV}\left(1-1^{-}\right) \quad \phi=138^{\circ} \pm 37^{\circ}$
No interference?

J/ $\boldsymbol{\psi}$ Strong and Electromagnetic Decay Amplitudes

Take J/ $\Psi \rightarrow$ ppbar / nnbar as a result
Initial-state isospin is $0, \mathrm{~A}_{3 \mathrm{~g}}($ ppbar $)=\mathrm{A}_{3 \mathrm{~g}}($ nnbar $)$.
Like magnetic moments, $\mathrm{A}_{\mathrm{EM}}(\mathrm{ppbar})=-\mathrm{A}_{\mathrm{EM}}($ nnbar $)$.
According to pQCD ,

$$
R=\frac{B r(J / \psi \rightarrow n \bar{n})}{B r(J / \psi \rightarrow p \bar{p})}=\left|\frac{A_{3 g}+A_{\gamma}^{n}}{A_{3 g}+A_{\gamma}^{p}}\right|^{2}=\frac{1}{2} \quad \begin{array}{lll}
\mathrm{A}_{3 g}, \mathrm{~A}_{\gamma} \in \mathfrak{R} & \mathrm{R} \ll 1 \\
\mathrm{~A}_{3 \mathrm{~g}} \perp \mathrm{~A}_{\gamma} & \mathrm{R} \approx 1
\end{array}
$$

But the BR are almost equal according to BESIII ${ }^{[1]}$:

$$
\begin{aligned}
& \mathrm{BR}(\mathrm{~J} / \Psi \rightarrow \text { ppbar })=(2.112 \pm 0.004 \pm 0.027) \cdot 10^{-3} \\
& \mathrm{BR}(\mathrm{~J} / \Psi \rightarrow \text { nnbar })=(2.07 \pm 0.01 \pm 0.14) \cdot \cdot 10^{-3}
\end{aligned}
$$

$>$ Suggests 90° phase
Measurement from J/ ψ decays has assumptions.

Including the effect of continum ($\mathrm{A}_{\text {cont }}$.)

Resonant contributions

$$
\Gamma_{\mathrm{J} / \psi} \sim 93 \mathrm{KeV} \rightarrow \mathrm{pQCD}
$$

pQCD: all amplitudes almost real ${ }^{[1,2]}$
QCD does not provide sizeable imaginary amplitudes $\rightarrow \phi \sim 10^{\circ}{ }^{[1]}$
A_{γ} and $\mathrm{A}_{3 \mathrm{~g}}$ must interfere $\left(\phi \sim 0^{\circ} / 180^{\circ}\right)$

Non-resonant continuum

pQCD regime

$$
\mathrm{A}_{\mathrm{EM}} \in \mathfrak{R}
$$

$$
\begin{gathered}
\text { If } \mathrm{A}_{\gamma} \text { and } \mathrm{A}_{\text {cont }} \text { has the same phase, } \\
\sigma \sim\left|\mathbf{A}_{3 \mathrm{~g}}+\mathrm{A}_{\mathrm{EM}}\right|^{2}=\left|\mathbf{A}_{3 \mathrm{~g}}\right|^{2}+\left|\mathbf{A}_{\mathrm{EM}}\right|^{2}+2 \operatorname{Re}\left[\mathbf{A}_{3 \mathrm{~g}} * \mathbf{A}_{\mathrm{EM}}\right]
\end{gathered}
$$

Expected Full Interferences in $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mu^{+} \mu^{-} / 2\left(\pi^{+} \pi^{-}\right)$

- Due to leptonic decay or G-parity, only A_{γ} and $A_{\text {cont. }}$ contribute in $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mu^{+} \mu^{-}$and $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow 2\left(\pi^{+} \pi^{-}\right)$

- $\sigma_{\text {tot }} \sim\left|A_{\gamma}+A_{\text {cont. }}\right|^{2}=\left|A_{\gamma}\right|^{2}+\left|A_{\text {cont. }}\right|^{2}+2 \operatorname{Re}\left[A_{\gamma} * A_{\text {cont. }}\right]$
- $\mathrm{A}_{\text {cont. }}$ has the same phase as $\mathrm{A}_{\gamma} \rightarrow \phi \sim 0^{\circ}$.
- Theoretical prediction when $\phi=0^{\circ}$. An obvious dip below J/ ψ.

- The interference pattern between $\mathrm{J} / \psi \rightarrow \mu^{+} \mu^{-}$and the nonresonant amplitudes has been firstly found @ SLAC [PRL 33,1406], BES-II [PLB 355,374] and KEDR [PLB 685,134].

Interference in strong mechanism J/ $\psi \rightarrow 5 \pi$

G-parity conserved. $\mathrm{A}_{3 \mathrm{~g}}$ contributes.

$$
\begin{aligned}
& \sigma \sim\left|A_{3 \mathrm{~g}}+\mathrm{A}_{\mathrm{EM}}\right|^{2}= \\
& \left|\mathrm{A}_{3 \mathrm{~g}}\right|^{2}+\left|\mathrm{A}_{\mathrm{EM}}\right|^{2}+2 \operatorname{Re}\left[\mathrm{~A}_{3 \mathrm{~g}} * \mathrm{~A}_{\mathrm{EM}}\right]
\end{aligned}
$$

How about the lineshape of J / ψ in $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow 5 \pi$?

In $\phi \rightarrow \pi^{+} \pi^{-} \pi^{0}$ @ Novosibirsk

- $\sigma \sim\left|A_{3 g}+A_{E M}\right|^{2}=$

$$
\left|\mathrm{A}_{3 \mathrm{~g}}\right|^{2}+\left|\mathrm{A}_{\mathrm{EM}}\right|^{2}+2 \operatorname{Re}\left[\mathrm{~A}_{3 \mathrm{~g}} * \mathrm{~A}_{\mathrm{EM}}\right] \quad \begin{aligned}
& \mathbf{e}^{+} \mathbf{e}^{-} \rightarrow \pi^{+} \pi^{-} \pi^{0} \text { around } \phi \\
& \text { Phys. Rev. D } 63,072002
\end{aligned}
$$

- The dip above ϕ peak indicates full interference $\phi \sim 180^{\circ}$.
- ϕ decays is in agreement with pQCD
- Both $\mathrm{A}_{3 \mathrm{~g}}$ and A_{EM} are real, opposite signs

Theoretical prediction on $\mathrm{J} / \psi \rightarrow 5 \pi$

ISR effect and energy spread of beam energy have been considered.

BESIII Experiment

The BESIII Detector

Beam energy: $1.0-2.3 \mathrm{GeV}$ Peak Luminosity:
Design: $1 \times 10^{33} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$
Achieved: $0.65 \times 10^{33} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$
Datasets already got:
2009: $\quad 106 \mathrm{M} \psi(2 \mathrm{~s}) \quad 4 x$ CLEOc
$225 \mathrm{M} \mathrm{J} / \psi \quad 4 x$ BESII
2010-11: $2.9 \mathrm{fb}^{-1} \psi(3770) 3.5 x$ CLEOC
2011: $\quad 0.5 \mathrm{fb}^{-1} @ 4.01 \mathrm{GeV}$ (Ds, XYZ)
2012: $\quad 0.4 \mathrm{~B} \psi(2 \mathrm{~S})$
$1.0 \mathrm{~B} \mathrm{~J} / \psi$ and J / ψ lineshape
fine scan for phase measurement
R scan@2.4, 2.8, 3.4 GeV
201: $515 \mathrm{pb}^{-1} @ 4260 \mathrm{MeV}$

Analysis on $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mu^{+} \mu^{-}$

- 2 good charged tracks:
- $|\mathrm{Rxy}|<1 \mathrm{~cm},|\mathrm{Rz}|<10 \mathrm{~cm}$;
- $|\cos \theta|<0.8$.
- No good neutral tracks in EMC:
- $0<\mathrm{T}<14$ (x50 ns)
- $\mathrm{E}_{\gamma}>25 \mathrm{MeV}(|\cos \theta|<0.8), \mathrm{E}_{\gamma}>50$ $\operatorname{MeV}(0.86<|\cos \theta|<0.92)$
- θ_{γ}, charged $<10^{\circ}$.
- Vertex fit to impove the momentum resolution:
- $\chi_{\text {vertex }}^{2}<100$.

Preliminary result

Energy (GeV)	Nevts	$\epsilon(\%)$	$L\left(\mathrm{pb}^{-1}\right)$	Cross section (nb)
3.0500	73731 ± 271.5	~ 57.7	$14.895 \pm 0.029 \pm 0.165$	$8.579 \pm 0.032 \pm 0.096$
3.0600	73092 ± 270.4	~ 57.7	$15.056 \pm 0.030 \pm 0.168$	$8.414 \pm 0.031 \pm 0.095$
3.0830	20777 ± 144.1	~ 57.7	$4.759 \pm 0.017 \pm 0.053$	$7.566 \pm 0.052 \pm 0.088$
3.0900	60878 ± 246.7	~ 57.7	$15.552 \pm 0.030 \pm 0.172$	$6.784 \pm 0.027 \pm 0.076$
3.0930	49262 ± 222.0	~ 57.7	$15.249 \pm 0.030 \pm 0.169$	$5.599 \pm 0.025 \pm 0.063$
3.0943	15493 ± 124.5	~ 57.7	$2.145 \pm 0.011 \pm 0.025$	$12.518 \pm 0.101 \pm 0.160$
3.0952	50952 ± 225.7	~ 57.7	$1.819 \pm 0.010 \pm 0.021$	$48.546 \pm 0.215 \pm 0.621$
3.0958	152043 ± 389.9	~ 57.7	$2.161 \pm 0.011 \pm 0.029$	$121.937 \pm 0.313 \pm 1.750$
3.0969	276861 ± 526.2	~ 57.7	$2.097 \pm 0.011 \pm 0.03$	$228.817 \pm 0.435 \pm 3.487$
3.0982	152109 ± 390.0	~ 57.7	$2.210 \pm 0.012 \pm 0.031$	$119.285 \pm 0.306 \pm 1.794$
3.0990	26110 ± 161.6	~ 57.7	$0.759 \pm 0.007 \pm 0.009$	$59.620 \pm 0.369 \pm 0.896$
3.1015	21293 ± 145.9	~ 57.7	$1.614 \pm 0.010 \pm 0.018$	$22.864 \pm 0.157 \pm 0.292$
3.1055	18767 ± 137.0	~ 57.7	$2.106 \pm 0.011 \pm 0.024$	$15.444 \pm 0.113 \pm 0.194$
3.1120	12765 ± 113.0	~ 57.7	$1.719 \pm 0.010 \pm 0.02$	$12.870 \pm 0.114 \pm 0.167$
3.1200	8261 ± 90.9	~ 57.7	$1.261 \pm 0.009 \pm 0.015$	$11.354 \pm 0.125 \pm 0.158$

Analysis on $\mathrm{e}^{+} \mathrm{e}^{-}-2\left(\pi^{+} \pi^{-}\right)$

- 4 good charged tracks:
- $|R x y|<1 \mathrm{~cm},|R z|<10 \mathrm{~cm}$.
- Vertex fit to improve the momentum resolution.
- Veto bkg from γ-conversion (2($\left.\mathrm{e}^{+} \mathrm{e}^{-}\right)$):
- All angles between π^{+}and π^{-}, $10^{\circ}<\theta_{\pi+\pi-}<170^{\circ}$.
- Veto events which have multitracks:
- Minimum angle between $\left(\pi^{+} \pi^{-}\right)$ pairs: $\theta\left(\pi^{+} \pi^{-}, \pi^{+} \pi^{-}\right)>170^{\circ}$.

Preliminary result

Preliminary result

Energy (GeV)	Nevts	$\epsilon(\%)$	$L\left(\right.$ pb $\left.^{-1}\right)$	Cross section (nb)
3.0500	2984.2 ± 69.1	~ 50.1	$14.895 \pm 0.029 \pm 0.165$	$0.400 \pm 0.009 \pm 0.005$
3.0600	2988.2 ± 66.7	~ 50.1	$15.056 \pm 0.03 \pm 0.168$	$0.396 \pm 0.009 \pm 0.005$
3.0830	767.4 ± 36.6	~ 50.1	$4.759 \pm 0.017 \pm 0.053$	$0.322 \pm 0.015 \pm 0.004$
3.0900	2275.3 ± 59.9	~ 50.1	$15.552 \pm 0.03 \pm 0.172$	$0.292 \pm 0.008 \pm 0.003$
3.0930	1689.1 ± 56.9	~ 50.1	$15.249 \pm 0.03 \pm 0.169$	$0.221 \pm 0.007 \pm 0.002$
3.0943	583.5 ± 30.3	~ 50.1	$2.145 \pm 0.011 \pm 0.025$	$0.543 \pm 0.028 \pm 0.007$
3.0952	2250.0 ± 61.8	~ 50.1	$1.819 \pm 0.01 \pm 0.021$	$2.469 \pm 0.068 \pm 0.032$
3.0958	6793.2 ± 97.9	~ 50.1	$2.161 \pm 0.011 \pm 0.029$	$6.275 \pm 0.091 \pm 0.090$
3.0969	122556.6 ± 146.7	~ 50.1	$2.097 \pm 0.011 \pm 0.03$	$11.76 \pm 0.140 \pm 0.179$
3.0982	6964.0 ± 124.3	~ 50.1	$2.21 \pm 0.012 \pm 0.031$	$6.290 \pm 0.112 \pm 0.095$
3.0990	1153.1 ± 44.6	~ 50.1	$0.759 \pm 0.007 \pm 0.009$	$3.032 \pm 0.117 \pm 0.046$
3.1015	922.4 ± 36.1	~ 50.1	$1.614 \pm 0.01 \pm 0.018$	$1.141 \pm 0.045 \pm 0.015$
3.10555	770.4 ± 0.7	~ 50.1	$2.106 \pm 0.011 \pm 0.024$	$0.730 \pm 0.001 \pm 0.009$
3.1120	595.0 ± 28.8	~ 50.1	$1.719 \pm 0.01 \pm 0.02$	$0.691 \pm 0.033 \pm 0.009$
3.1200	327.8 ± 23.6	~ 50.1	$1.261 \pm 0.009 \pm 0.015$	$0.519 \pm 0.037 \pm 0.007$

A dip just below J/ ψ peak, which is consistent with $\phi=0^{\circ}$ case.

Analysis on $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow 2\left(\pi^{+} \pi^{-}\right) \pi^{0}$

- 4 good charged tracks:
- $|R x y|<1 \mathrm{~cm},|\mathrm{Rz}|<10 \mathrm{~cm}$.
- At least 2 good neutral tracks in EMC:
- $0<\mathrm{T}<14$ (x50 ns);
- $\mathrm{E}_{\gamma}>25 \mathrm{MeV}(|\cos \theta|<0.8)$, $\mathrm{E}_{\gamma}>50 \mathrm{MeV}$
($0.86<|\cos \theta|<0.92$)
- θ_{γ}, charged $<10^{\circ}$.
- PID for each charged track:
- $\operatorname{prob}(\pi)>\operatorname{prob}(\mathrm{K})$
- Vertex fit:
- $\chi_{\text {vertex }}^{2}<100$.
- 3-C kinematic fit:
- Loop all photons, choose the combination with the minimum $\chi_{3 \mathrm{C}}^{2}(<200)$.
- π^{0} selection:
- $|\mathrm{M}(\gamma \gamma)-0.135|<0.02$ $\mathrm{GeV} / \mathrm{c} 2$
- $\left|\cos \theta\left(\pi^{0}\right)_{\text {decay }}\right|=\frac{\left|\mathrm{E}_{\gamma_{1}}-\mathrm{E}_{\gamma_{2}}\right|}{p_{\pi^{0}}}<0.9$

Multi-combinations in $2\left(\pi^{+} \pi^{-}\right) \pi^{0}$

take data @ 3.0969GeV as an example

$\mathbf{M}(3 \pi)$ in $\rho^{0} \rho \pi\left(\mathbf{G e V} / \mathbf{c}^{2}\right)$

Possible intermediate processes:
$\omega \pi^{+} \pi^{-}, \omega \rightarrow \pi^{+} \pi^{-} \pi^{0} ;$
$\eta \pi^{+} \pi^{-}, \eta \rightarrow \pi^{+} \pi^{-} \pi^{0}$
(G-parity violated);
$\rho^{0} \rho^{ \pm} \pi^{ \pm} ;$
${ }_{18} \rho^{ \pm} \pi^{ \pm} f_{2}$ (1270).
RMCWG-ECT

J / ψ lineshape from $\omega \pi^{+} \pi^{-}$and $\rho^{ \pm}$events

The possible interference between intermediate resonances may affect the J/ ψ lineshape.

The behaviors of $\omega \pi^{+} \pi^{-}$ and $\rho^{ \pm}$events look similar. Neither of them is consistent with $\phi=0^{\circ}$ case.
 consistent with $\phi=0{ }^{\circ}$ case.

J/ ψ lineshape from $2\left(\pi^{+} \pi^{-}\right) \pi^{0}$ (veto $\eta \pi^{+} \pi^{-}$)

Different from $\mu^{+} \mu^{-}$or $2\left(\pi^{+} \pi^{-}\right)$, the J/ ψ lineshape is more consistent with $\phi=90^{\circ}$.

Summary of J/ ψ lineshapes

Different lineshapes $\rightarrow A_{3 g}$ is perpendicular to $A_{E M}$?

Next work

- More dedicate work on ISR;
- Precise evaluation of $\mathrm{E}_{\mathrm{cms}}$ and of the correspondant uncertainties;
- Systematic errors studies;
- Fitting on the lineshapes to get the phase angle.
- Better understanding of the phase angle.
- More channels, i.e., e+e- \rightarrow ppbar(under work by Marco Destefanis)/nnbar $/ 6 \pi$

Thanks!

