Status of the CMD-3 Experiment at VEPP-2000

Simon Eidelman

Budker Institute of Nuclear Physics SB RAS and Novosibirsk State University, Novosibirsk, Russia

Outline

1. General

- 2. PID at low energies
- 3. $e^+e^- \rightarrow 6\pi$
- 4. Conclusions

General

- Since 2010, when data taking started, CMD-3 collected: 3.1 pb⁻¹ at the ϕ , 33 pb⁻¹ from ϕ to 2 GeV, 5.2 pb⁻¹ below the ϕ
- The maximum luminosity is $2 \cdot 10^{31} \text{ cm}^{-1} \text{s}^{-1}$ at 1.7-1.8 GeV, falling much slower with decreasing energy than before the round beams
- At high energies lumi is limited by a deficit of positrons and maximum energy of the booster (900 MeV now)
- We are now running at 2 \times 160 MeV, the smallest \sqrt{s} ever, another 2-3 months at the ω and ϕ
- A long shutdown for 1-1.5 years to increase the booster energy to 1 GeV and commission the new injection complex to reach 10^{32} cm⁻¹s⁻¹

Luminosity measured by $e^+e^- \rightarrow e^+e^-$ and $e^+e^- \rightarrow \gamma\gamma$ at large angles agrees

PID by Momentum at Low Energies – I

 $\sqrt{s} = 360 \text{ MeV}, 0.65 \text{T}, \mathcal{L} \sim 2 \cdot 10^{29} \text{ cm}^{-1} \text{s}^{-1} \text{ or } \times 6 \text{ than at } 1.3 \text{T}$

PID by Momentum at Low Energies – III

(tpot(0)+pot(1))2. {ts_osl&&(tpot(0)+pot(1))2.200&&(tpot(0)+pot(1))2.80&&abs(z0)

at low energies accuracy will be much better from PID by momentum

the expected $1/\sqrt{N_{\pi\pi}}$ for $1.1 < \theta < \pi - 1.1$

$$e^+e^- \to 3\pi^+3\pi^- - \mathrm{I}$$

- The very first physical publication of CMD-3 on $e^+e^- \rightarrow 3\pi^+3\pi^-$ in arxiv:1302.0053, PLB
- A scan from 1500 to 2000 MeV with a $\sqrt{s} = 25$ MeV step and a finer scan of the near- $N\bar{N}$ threshold used, $\int Ldt = 22$ pb⁻¹
- About 8k five- and six-track events selected (5069 and 2887 events, respectively)
- Very few candidates below 1.5 GeV

$$e^+e^- \rightarrow 3\pi^+3\pi^- - \mathrm{IV}$$

We study dynamics, pure phase space doesn't work, three models with $J^{PC} = 1^{--}$, each with one ρ^0 /event:

- $\rho(1450)(\pi^+\pi^-)_{\text{S-wave}} \to a_1(1260)^{\pm}\pi^{\mp}\pi^+\pi^- \to \rho^0 2(\pi^+\pi^-) \to 3(\pi^+\pi^-)$
- $\rho(770)(2\pi^+2\pi^-)_{\text{S-wave}} \to 3(\pi^+\pi^-)$ 3 options for $2\pi^+2\pi^-$: phase space, $f_0(1370), f_0(1500)$
- $\rho(770)f_2(1270) \to 3(\pi^+\pi^-)$

Trento, RMC

Cosines of the angle between two pions: (a) opposite-sign charge, (b) same-sign charge

$e^+e^- \rightarrow 3\pi^+3\pi^ X$		
Systematic uncertainties for $\sigma(e^+e^- \rightarrow 3\pi^+3\pi^-)$		
Source	CMD-3, $\%$	BaBar, $\%$
Model	4	3
Selection	3	$2 \bigoplus 3$
Lumi	2	3
Background (6 tr.)	1	3
Background (5 tr.)	3	_
$\Delta\sqrt{s}/\sqrt{s}(\sim 5\cdot 10^{-3})$	1	_
Rad. corr.	1	1
Total	6	6

CMD-3: R.R. Akhmetshin et al., arxiv:1302.0053, Phys. Lett. BBaBar: B. Aubert et al., Phys. Rev. D 73, 052003 (2006)

Trento, RMC

Conclusions

- VEPP-2000 operates successfully in the mode of round beams, Luminosity is ~ 5 times higher than before from ω to 1.4 GeV, $2 \cdot 10^{31} \text{ cm}^{-1} \text{s}^{-1}$ achieved at 1.7-1.8 GeV
- Two updated detectors, CMD-3 and SND, are taking data and perform fairly well. Work on calibrations, software is in progress
- With collected $\int Ldt$ CMD-3 has the stat. accuracy of cross sections for most of the multihadronic processes the same or better than at BaBar
- Analysis is in progress for $e^+e^- \to \pi^+\pi^-$, K^+K^- , $\pi^+\pi^-\pi^0$, $2\pi^+2\pi^-$, $\pi^+\pi^-2\pi^0$, $K^+K^-\pi^+\pi^-$, $3\pi^+3\pi^-$, $2\pi^+2\pi^-2\pi^0$, $p\bar{p}$
- First analysis of the $3\pi^+3\pi^-$ dynamics will soon be published
- We hope to have $\mathcal{L} \sim 10^{32} \text{ cm}^{-1} \text{s}^{-1}$ at VEPP-2000 in 2015