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PSEUDOSCALAR TFF



PSEUDOSCALAR TFF
• Pseudoscalar meson Transition Form Factors (TFF) describe interaction of 

pseudoscalar mesons with 2 photons
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• This form factor is well known from perturbative QCD (pQCD) (Brodsky & 
Lepage, PRD 22, 1980) and the ABJ anomaly, respectively ("0 case)

Where #", the pion (pseudoscalar) distribution amplitude (DA), encodes all the non-
perturbative information.

• pQCD predicts asymptotic behavior
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PSEUDOSCALAR TFF

• However, the DA is not known and we don’t have a good description at low 
energies: $PT does not give a precise description and only Q2=0 value is 
well known (decay through ABJ anomaly)

• Finally, we must invoke some model either modeling the TFF itself (i.e. 
Vector Meson Dominance (VMD), Sum Rules) or the DA instead (i.e. Light 
Cone pQCD, Holographic)

All of them lead to different predictions ...
•which one is the most accurate?

•could we estimate the systematic error from 
model dependency?

• We could take a systematic and model independent  approach able to 
estimate systematics.

Padé approximants



PADé APPROXIMANTS



Padé approximants

• Padé Approximants (PA) are rational functions, given by the quotient of 2 
polynomials of order (N,M)

• The different coefficients may be related to the Taylor Series of the function

FP�(Q
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• Where ai and bi are such to match the Taylor expansion of the function to be 
approximated, details in G.A. Baker and P. Grave-Morris, Encyclopedia of 
Mathematics and its applications, Cambridge University Press 1996

• We can obtain them from fitting data: using systematically higher sequences 
(increasing N, M) we improve the result

• Nevertheless at some (N,M) the new parameters are compatible with zero 
and we should stop fitting, which introduces systematic error.
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Padé approximants

Use well-motivated Padé Approximants  sequences to improve convergence

• Include poles (zeros of the 
denominator)

• Asymptotic pQCD behavior encoded. 
Fixing asymptotic ⇒ Brodsky-Lepage 
interpolation formula

• Well known models such as VMD or      
LMD are nothing, but constrained PA’s VMD =

1

4⇡2f⇡

1

1 + Q2

M2
⇢

Increasing N leads to stable convergent coefficients which should approach the 
“real” value. Different sequences lead to similar results checking robustness
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Results for η, η’ TFF



Fitting results for η
Take all the available data

CELLO (red), CLEO (purple), BABAR (orange), TFF(Q2=0) from KLOE-2
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Fitting results for η
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Additionally, we use the timelike data points from CLEO (14GeV2) (purple 
dashed) and BABAR (112GeV2) (orange dashed)

We combine some data points in next plots to avoid cluttering



Fitting results for η
We use the Padé sequence P(N,N+1)

⇒ We reach the P(1,2) which is shown orange, P(0,1) shown in blue
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a0 = 0.275(6) (KLOE-2); a⌘ = 0.547(18)stat(31)sys; b⌘ = 0.304(25)stat(64)sys

Preliminary Results



Fitting results for η

Compare our slope to other results 

It nicely agree with different results
All other experimental results use a VMD fit to obtain the result
We have an estimate for the systematic error in our final result

Spacelike Timelike �PT , Ametller et. al Czyż et. al

Our CELLO CLEO Lepton-G NA60 MAMI WASA PRD 45, (1992) PRD 85, (2012)
a⌘ 0.547(18)(31) 0.428(63) 0.501(38) 0.57(12) 0.585(51) 0.58(11) 0.68(26) 0.51 0.546(9)



Fitting results for η’
Take all the available data

CELLO (red), CLEO (purple), BABAR (orange), TFF(Q2=0) from PDG
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Fitting results for η’
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Additionally, we use the timelike data points from CLEO (14GeV2) (purple 
dashed) and BABAR (112GeV2) (orange dashed)

We combine some data points in next plots to avoid cluttering



Fitting results for η’
We use the Padé sequence P(N,N+1)

⇒ We are able to reach the P(0,1) approximant which is shown red
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Preliminary Results

a0 = 0.347(55) (PDG); a⌘0 = 1.24(1)stat(7)syst; b⌘0 = 1.54(4)stat(32)sys



Fitting results for η’

Compare our slope to other results 

Spacelike Timelike �PT , Ametller et. al Czyż et. al

Our CELLO CLEO Lepton-G PRD 45,(1992) PRD 85,(2012)
a⌘0 1.24(1)(7) 1.46(16) 1.24(8) 1.6(4) 1.47 1.384(3)

It nicely agree with different results
All other experimental results use a VMD fit to obtain the result
We have an estimate for the systematic error in our final result



applications
CALCULATION OF (g-2)!HLBL;PS

η-η ‘ mixing



CALCULATION OF (g-2)!HLBL;PS



estimation for (g-2)!HLBL;PS

• Our determination of the previous TFF may be used as an input to estimate 
the pseudoscalar Light by Light contribution to (g-2)! value (M. Knecht and 
A. Nyffeler, (2001)). We have the advantage of including systematic errors.

�PT + Large N�����������!
FP�⇤�(Q

2, 0)

FP�⇤�⇤(Q02, Q002)

• The integral over virtualitites is 
peaked at low energies (due to 
low muon mass)

• Bigger for pseudoscalar closer 
to the muon mass

QCD

EWQED

   Latest measurement (E821 BNL)
       (g-2)! =116592089(54)st(33)systx10-11

       (g-2)!Th. = 116591801(49)x10-11
   Theory

P = {⇡, ⌘...}

Preliminary Results



• In order to obtain the double virtual form factor, we may use Bose 
symmetry to use invariance upon Q21 ⇔ Q22 .

• This TFF are PA as well. Since there is no data, we take the above ansatz.

• The first one have the decay and slope parameters as inputs.

• The second one needs two more: we take the curvature and the % mass.

• We determine a (conservative) 5% systematic error
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estimation for (g-2)!HLBL;PS



• We obtain (Also "0 contribution in P. Masjuan PRD86, (2012) for completeness )

• We see that the 5% error is big enough. The result is

• Our result improves errors with respect to the Knecht-Nyffeler even 
when systematics are included 8.3(1.2). Other results: 8.3(0.6) HGS 
Hayakawa 8.5(1.3) ENJL Prades (10-10 units).

• Still, off-shellness is not included and sign is unclear.

aHLBL;PS
µ (8.2(5)stat(4)sys)10

�10

estimation for (g-2)!HLBL;PS
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Table 1: Collection of results for the aHLBL;PS
µ for PS = ⇡0

, ⌘ and ⌘0

contributions. Results in units of 10

�10
. N = 2,1,0 respectively for ⇡0, ⌘, ⌘0
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Preliminary Results



η-η ‘ mixing



applications: η-η‘ mixing

• The physical &, &’ mesons are not those of the $PT SU(3) lagrangian: they mix 
each other

• However the mixing parameters are not known from first principles. 
Furthermore, their phenomenological values are not accurate enough

SU(3)basis: {&8~&, &0~&’} Flavor basis:{&q, &s}

Mixing Scheme

Phenomenological 
results
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= 1.17
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• Constrained in the literature using &(&’) →'' as well as hadron decays into &(&’)

• &’ gluonium content issues discussed later
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η-tff  asymptotics

Preliminary Results

‡‡‡
‡‡‡

‡

‡
‡ ‡

‡

Ú
Ú
ÚÚÚÚÚ
ÚÚ

Ú

Ú

Ú

Ê
ÊÊ

Ê

˜̃
˜̃

‡‡‡
‡‡‡

‡

‡
‡ ‡

‡

Ú
Ú
ÚÚÚÚÚ
ÚÚ

Ú

Ú

Ú

Ê
ÊÊ

Ê

˜̃
˜̃

0 20 40 60 80 100
0.00

0.05

0.10

0.15

0.20

0.25

Q2 @GeV2D

Q
2 F
hg
g*
HQ2 L

@Ge
V
D

Setting free the asymptotic limit (P(N,N+1)) we obtain 0.18(+0.15/-0.03)
Using results from the literature we obtain reasonable values ( $2/dof < 1.3 ) with 

asymptotic limit in the range (0.154-0.190)GeV



η’-tff  asymptotics
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Setting free the asymptotic limit (P(N,N+1)) we obtain 0.255(2) GeV
⇒ Compare with the literature (0.29-0.36) GeV using P’(N,N+1)
⇒ All descriptions similar and reach asymptotics quite far

Preliminary Results



η-η‘  mixing parameters

• Since &’ TFF asymptotic limit was precisely determined using fitting 
procedures, fix it @ 0.255 GeV.

• For the & TFF, take the range we found: (0.154-0.190) GeV.

• Use decay amplitudes and asymptotics to find mixing pars. (need 4 pars.).

• #q and fs specially sensitive to the asymptotics and decays ⇒ More input.

• We may be sensitive to gluonium content.

• Big differences respect to the literature ⇒ Use a more elaborated approach.

• Naive approach to be improved in a future work with R. Escribano and P. Masjuan

limQ2!1 Q2F⌘��⇤(Q2) ✓8 ✓0 f8 f0
0.190 �33.8� �4.3� 1.84 1.21
0.170 �36.3� �3.6� 1.72 1.21
0.154 �35.6� �7.2� 1.29 1.12

limQ2!1 Q2F⌘��⇤(Q2) �q �s fq fs
0.190 15.7� 36.9� 1.10 2.43
0.170 21.7� 37.9� 0.98 2.08
0.154 21.0� 34.7� 0.91 2.16

Preliminary 
Results



η, η‘ light quark content
• Having the mixing angles we can find the light quark content of the & and &’

• We would expect it to be similar to the " TFF

Asymptotic & (& ‘) limit = 0.190 GeV (0.255 GeV)
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Preliminary Results



• Having the mixing angles we can find the light quark content of the & and &’

• We would expect it to be similar to the " TFF

Asymptotic & (& ‘) limit = 0.170 GeV (0.255 GeV)

Preliminary Results
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η, η‘ light quark content



• Having the mixing angles we can find the light quark content of the & and &’

• We would expect it to be similar to the " TFF

Asymptotic & (& ‘) limit = 0.150 GeV (0.255 GeV)

Preliminary Results
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η, η‘ light quark content



conclusions



 conclusions

• We have developed a method which is model independent, allows for 
systematics and may be a good tool for a variety of purposes, being user-
friendly.

• We have found reasonable values (with systematics) for the low energy 
constants of the &, &’ TFF.

• This method is useful to constrain the &-&’ mixing.

• This methods allows us to compute (g-2)!HLBL;PS  contribution with improved 
accuracy and to include systematic error due to TFF parametrization.

• Forthcoming data from BES-III will improve the results shown here as well as 
the "0 one. Some Belle analysis for the & and the &’ would be very welcomed 
too.



Thanks for your attention!



backup: Systematics

• Take well-motivated models describing transition from factors: Regge, 
Holographic & Log models 

• Take values from this models at points similar to the available 
experimentally. Then fit and check convergence to the real PA for this model    
(not including noise, since we aim for systematics)

P 0
1 P 1

1 P 2
1 P 3

1 P 4
1 P 5

1 F⇡� (exact)

a0(GeV �1
) 0.2556 0.2694 0.2734 0.2746 0.2751 0.2752 0.2753

a1(GeV �1
) 0.1290 0.1716 0.1935 0.2051 0.2124 0.2166 0.22294

a2(GeV �1
) 0.0651 0.1147 0.1492 0.1725 0.1898 0.2013 0.2549

Table: Results for the F"'(Q2) in the log model appearing in Ref. [8]



backup: PA Sequences

• Values obtained with the different sequences are compatible within errors.

• We take the weighted average as the final value for slope and curvature, 
which will be ascribed a 5.6% and 21% respectively

• The value at the origin and its error is, essentially, the one from experiment

TABLE I. Pseudoscalar Transition Form Factor results from the fit to experimental data.

⇡TFF ⌘TFF ⌘

0
TFF

N a⇡ b⇡ ⇥ 10

�3
�

2
/dof N a⌘ b⌘ �

2
/dof N a⌘0

b⌘0
�

2
/dof

P [N, 1] 5 0.0340(35) 1.20(28) 0.79 5 0.569(60) 0.328(77) 0.92 5 1.29(10) 1.66(30) 0.81

P [N, 2] 1 0.0324(20) 1.07(15) 0.76 1 0.545(24) 0.298(27) 0.85 0 1.24(3) 1.53(6) 0.81

P [N,N + 1] 2 0.0331(45) 1.11(27) 0.76 1 0.545(24) 0.298(27) 0.85 0 1.23(2) 1.52(6) 0.83

P

0
[N,N + 1] 2 0.0332(25) 1.13(19) 0.77 1 0.582(

+83
�70) 0.346(

+120
�96 ) 0.91 1 1.25(3) 1.56(9) 0.83

PT [N, 1] 5 0.0302(28) 0.92(18) 0.82 6 0.545(30) 0.300(40) 0.95 6 1.29(5) 1.66(16) 0.83

Final 0.0324(12) 1.06(9) 0.547(18) 0.303(25) 1.24(1) 1.54(4)



• In order to obtain the double virtual form factor, we may use Bose 
symmetry to use invariance upon Q21 ⇔ Q22 .

• The errors may be estimated comparing our 

TFF(Q2,0) PA convergence to a model (Regge).

• It is shown that difference between P(1,2) and 

P(0,1) is a good estimate to the real error.

• Still, since integral relevant until 1 GeV we take 

5% systematics, though may be refined.

• Parametrizing this Q2-dependent error we 

obtain 2% error, similar to the difference among 

approximants.

12

F⇡0�⇤�⇤(q21 , q
2
2) = F⇡0�⇤�⇤(Q2
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NcAQ
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�  
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+

Q
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◆�
, (A2)

where Q

2 = �(q21 + q

2
2), A = q21�q22

q21+q22
and c a constant [49,

55].
To reassemble the physical case we consider Nc = 3,

⇤2 = 1.3 GeV2 (as suggested by the recent light non-
strange qq̄ meson spectrum analysis [113] using the half-
width rule [114]), A = 1/2, M2 = (0.8)2GeV2 and the
constant c in such a way that the anomaly F⇡0��(0, 0) =

1
4⇡2f⇡

is recovered.

Eqs. (A1) and (A2) use the large-Nc and chiral lim-
its and thus have an analytic structure in the complex
momentum plane which consists of an infinity of isolated
poles but no brunch-cut, i.e. they become meromorphic
functions. As such, they have a well-defined series ex-
pansion in powers of momentum around the origin with
a finite radius of convergence given by the first resonance
mass. It is well-known [111] and largely explored in the
context of Large-Nc [13–15] than the convergence of any
near diagonal PA sequence to the original function for
any finite momentum, over the whole complex plane (ex-
cept perhaps in a zero-area set) is guaranteed.

Fp0 g* g* HQ2L-P21HQ2L

Fp0 g* g* HQ2L-P10HQ2L

P21HQ2L-P10HQ2L
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FIG. 8. Relative error for the first and second elements of the
P

N
N+1(Q

2) sequence compared to the TFF function Eq. (A2)
(blue and red-dashed lines, resp.). The green-dotdashed line
represents the relative error between the first and the second
element on the approximant sequence.

By expanding Eq. (A2) one obtains the LECs that are
used to build up the P

N
N+1(q

2
1 , q

2
2) sequence. Each ele-

ment of this sequence approximates better the low-energy
region than the intermediate or large one, although as
larger the sequence, larger the region well approximated.
Comparing the P

0
1 (q

2
1 , q

2
2), the P

1
2 (q

2
1 , q

2
2) and so on with

F⇡0�⇤�⇤(q21 , q
2
2) from Eq. (A2) one gets an idea of that

q

2-dependent systematic error. We show in Fig. 8 the
relative error for both P

0
1 (q

2
1 , q

2
2) and P

1
2 (q

2
1 , q

2
2) com-

pared to F⇡0�⇤�⇤(q21 , q
2
2) (blue and red-dashed lines) but

also the relative error between P

0
1 (q

2
1 , q

2
2) and P

1
2 (q

2
1 , q

2
2)

(green-dotdashed line). We remark the similarity be-
tween the relative error of the P

0
1 (q

2
1 , q

2
2) and the one

between P

0
1 (q

2
1 , q

2
2) and P

1
2 (q

2
1 , q

2
2). This simple exercise

suggests to use such di↵erence to estimate the systematic
error done with the P

0
1 (q

2
1 , q

2
2).

In such a way, we define an error function ✏(Q2
1, Q

2
2))

as such

F⇡0�⇤�⇤(Q2
1, Q

2
2) = P

0
1 (Q

2
1, Q

2
2)(1 + ✏(Q2

1, Q
2
2)) , (A3)

with P

0
1 (Q

2
1, Q

2
2) given in Eq. (21) and ✏(Q2

1, Q
2
2) emu-

lating the di↵erence between P

0
1 (q

2
1 , q

2
2) and P

1
2 (q

2
1 , q

2
2).

As shown in Fig 8 the error increases with the energy
reaching almost 10% of relative error for energies around
2 GeV, region which dominates the a

HLBL
µ . The error

function can be parameterized as:

✏(Q2
1, Q

2
2)) =

✓
1 +

Q

2
1

20

◆✓
1 +

Q

2
2

20

◆
. (A4)

Computing the angular integrals accounting for aHLBL
µ

with Eq. (21) or Eq. (A3) yield a di↵erence around 2%.
We suggested in the main text, instead, to ascribe a 5% of
systematic error for such di↵erence, which should account
for any possible model-dependent extraction of such dif-
ference.

Appendix B: Weighting functions

As demonstrated in [88], when a TFF parameterization
can be cast in a generic form such as:

FPS�⇤�⇤(Q2
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2
2) =

� 1

4⇡2
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f(�Q

2
1) +
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i
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2
2 +m

2
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gi(�Q

2
1)

�
,

(B1)

with mi the poles of our approximants. Then, in the gen-
eral two-loop expression for the pion-exchange contribu-
tion to the HLBL, the angular integrations can be per-
formed using the hyperspherical approach. The HLBL
piece can be then evaluated through the following ex-
pression:

a

HLBL;PS
µ =

�
↵em

⇡

�3
(aPS

µ(1) + a

PS
µ(2)) , (B2)

where

FP�⇤�⇤(Q2
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2
2) = a

b

(b+Q2
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b

(b+Q2
2)
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2
2) =

a+ bQ2
1
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1)(d+Q2
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estimation for (g-2)!HLBL
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Defining the decay constant using the mixing parameters in the following way

We obtain the following expression for the asymptotic limit

And the next one for the decay int photons
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η-tff  asymptotics
Higher asymptotic (solid black) is preferred by data

Low energy data would help distinguishing different asymptotic values too
Hence forthcoming Belle as well as BES-III data may help in constraining asymptotic
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