TRENTO, ITALY Institutional Member of the ESF Expert Committee NuPECC

> Trento ECT*, April 10, 2013 Workshop: Constraining the hadronic contribution to (g-2)_u

Review of R-Measurements and Perspectives at BES-III

Constraining the hadronic contributions to the muon anomalous magnetic moment

Achim Denig University of Mainz Institute for Nuclear Physics

$$R = \frac{\sigma^{(0)}(e^+e^- \rightarrow \text{hadrons})}{\sigma^{(0)}(e^+e^- \rightarrow \mu^+\mu^-)}$$

R lead to formulation of Standard Model

- Number of colours N_c = 3
- Number of quark flavours N_f > 2

Achim Denig

$$R = \frac{\sigma^{(0)}(e^+e^- \rightarrow \text{hadrons})}{\sigma^{(0)}(e^+e^- \rightarrow \mu^+\mu^-)}$$

R lead to formulation of Standard Model

- Number of colours N_c = 3
- Number of quark flavours N_f > 2

Achim Denig

Extracting Fundamental Parameters of QCD from R Measurements

- Extraction of quark masses (c, b)
- Chiral condensates
- Extraction of strong coupling constant
- Hadron spectroscopy
- Timelike nucleon EM Form Factors

Outline

- Motivation: $(g-2)_{\mu} \& \alpha_{QED} (M_z^2)$
- Results Energy Scan
- Perspectives at BES-III
- Conclusions and Future Perspectives

Outline

- Motivation: $(g-2)_{\mu} \& \alpha_{QED} (M_z^2)$
- Results Energy Scan
- Perspectives at BES-III
- Conclusions and Future Perspectives

Hadronic Cross Section Data and $(g-2)_{\mu}$

Determine the hadronic contriution to $a_{\mu} = (g-2)_{\mu}$

7

Hadronic Cross Section Data and $(g-2)_{\mu}$

Achim Denig

Review of R measurements

 $\Delta a_{\mu} = a_{\mu}^{exp} - a_{\mu}^{SM} =$ (28.7 ± 8.0) · 10⁻¹⁰ (3.6 σ) Error(s) or New Physics ?

Achim Denig

Muon Anomaly $(g-2)_{\mu}$

 $\Delta a_{\mu} = a_{\mu}^{exp} - a_{\mu}^{SM} =$ (28.7 ± 8.0) · 10⁻¹⁰ (3.6 σ) Error(s) or New Physics ?

Factor 4 improvement in experimental error

¹¹*Hadronic Cross Section Data and* $\alpha_{em}(M_Z^2)$ ^{IG|U}

Running of α_{em} (s) with s due to vacuum polarization corrections

- Leptonic Vacuum Polarization calculable within QED
- Hadronic Vacuum Polarization not accessible in pQCD \rightarrow Dispersion relation

$$\alpha_{\rm em}(s) = \frac{\alpha(0)}{(1 - \Delta \alpha_{\rm em}(s))} \qquad \alpha^{-1}(M_Z^2) = 128.962 \pm 0.014$$
Davier, et al.(2010)

¹² Hadronic Cross Section Data and $\alpha_{em}(M_Z^2)$ ^{JG|U}

Running of α_{em} (s) with s due to vacuum polarization corrections

- Leptonic Vacuum Polarization calculable within QED
- Hadronic Vacuum Polarization not accessible in pQCD \rightarrow Dispersion relation

$$\begin{split} \alpha_{\rm em}(s) &= \underbrace{\alpha(0)}_{(1-\Delta\alpha_{\rm em}(s))} & \alpha^{-1}(M_Z^2) = 128.962 \pm 0.014 \\ {}_{\rm Davier, \ et \ al.(\ 2010)} \\ \\ \hline QED \quad \Delta\alpha_{\rm lep}(M_Z^2) &= 314.97686 \cdot 10^{-4} \\ strong \ \Delta\alpha_{\rm had}(M_Z^2) = (274.2 \pm 1.0) \cdot 10^{-4} \\ \\ \hline dispersion \ integral \ relates \ \sigma_{\rm had} \\ with \ \Delta\alpha_{\rm em}^{\rm had} \end{split}$$

\rightarrow R data up to few GeV essential, above use pQCD !

$\alpha_{em}(M_z^2)$ limiting electroweak precision fits

- → Test overall consistency of the electroweak Standard Model
- \rightarrow Since the discovery of the Higgs boson more timely than ever

$\alpha_{em}(M_z^2)$ limiting electroweak precision fits

- → Test overall consistency of the electroweak Standard Model
- \rightarrow Since the discovery of the Higgs boson more timely than ever

$\alpha_{em}(M_z^2)$ limiting electroweak precision fits

- \rightarrow Test overall consistency of the electroweak Standard Model
- \rightarrow Since the discovery of the Higgs boson more timely than ever

Outline

- Motivation: $(g-2)_{\mu} \& \alpha_{QED} (M_z^2)$
- Results Energy Scan and ISR
- Perspectives at BES-III
- Conclusions and Future Perspectives

Hadronic Cross Section via Energy Scan

JGU

Hadronic Cross Section via Energy Scan

JGU

Overview Novosibirsk Results

• CMD-2: $\pi^+\pi^-$ <1%, higher multiplicities few % accuracy

• SND measurement of $\pi^+\pi^-$ with 1.2% accuracy

Achim Denig

Review of R measurements

VEPP-2000: Upgrade towards $E_{max} = 2.0 \text{ GeV}^{JG|U}$

VEPP-2000 (since 2010):

- Upgrade towards E_{max}=2.0 GeV
- $L_{max} = 1 \cdot 10^{32} \text{ cm}^{-2} \text{ s}^{-1} \text{ at } 2 \text{ GeV}$
- Upgrade of detectors CMD-3, SND

VEPP-2000: Upgrade towards $E_{max} = 2.0 \text{ GeV}^{JG|U}$

VEPP-2000 (since 2010):

- Upgrade towards E_{max}=2.0 GeV
- $L_{max} = 1 \cdot 10^{32} \text{ cm}^{-2} \text{ s}^{-1} \text{ at } 2 \text{ GeV}$
- Upgrade of detectors CMD-3, SND

- Pre-study, using BESI tau mass data, 12 points around 3.55 GeV, ~8.5%, HEP&NP24, 609 (2000);
- Test run, 6 continuum points in 2.6 ~ 5.0 GeV, PRL84, 594 (2000);
- Full scan, 85 points in 2 ~ 4.8 GeV, PRL88, 101802 (2002);
- R around ψ(3770), 2 points off-resonance, 1 on-resonance, PLB641, 145 (2006);
- Improvements at 3 continuum points, PLB677, 239 (2009).

BEPC: $\sigma_{incl}(e^+e^- \rightarrow Hadrons)$

Results

- 3-5 % statistical accuracy per scan point
- Systematic uncertainty: ~5 ...8%
- Major improvement of R
- Best measurement to date
- Important QCD test
- Of utmost importance for $\alpha_{em}(m_z^2)$

Initial State Radiation (ISR)

Achim Denig

Utmost importance for (g-2)_u but not (yet) competitive with R_{incl} > 2 GeV

Outline

- Motivation: $(g-2)_{\mu} \& \alpha_{QED} (M_z^2)$
- Results Energy Scan
- Perspectives at BES-III
- Conclusions and Future Perspectives

The BESIII Detector

R measurement foreseen in 3 phases

- Phase 1:R in range 2 4.5 GeV
~10⁴ events per scan point, 3% systematic accuracy \rightarrow improve $\alpha_{QED}(m_Z^2)$ by factor 2
- Phase 2:R in range 2 3 GeV, high statistics>105 events per scan point

 \rightarrow Improve nucleon IG_EI/IG_MI ratio, Nucleon FF

Phase 3: Fine binning R ratio in charmonium region

 \rightarrow charmonium spectroscopy

Phase 1: Precision R Scan

$$R = \frac{1}{\sigma_{\mu+\mu-}} \cdot \frac{N_{had} - N_{bg}}{L \cdot \varepsilon_{had} \cdot (1 + \delta)}$$

N_{had}: observed hadronic events

- N_{bg}: background events
- L: integrated luminosity
- ϵ_{had} : detection efficiency for N_{had}
- δ : radiative correction factor
- $\sigma_{\mu\mu}$: calculated within QED.

Measurement of R is a measurement of $\sigma(e^+e^- \rightarrow hadrons)$

Except for controlling each item to the precision requested,

stable long term machine and detector performance is crucial.

Phase 1: Precision R Scan

$$R = \frac{1}{\sigma_{\mu+\mu-}} \cdot \frac{N_{had} - N_{bg}}{L \cdot \varepsilon_{had} \cdot (1 + \delta)}$$

 N_{had} : observed hadronic events N_{bg} : background eventsL: integrated luminosity ϵ_{had} : detection efficiency for N_{had} δ : radiative correction factor

 $\sigma_{\mu\mu}$: calculated within QED.

Measurement of R is a measurement of $\sigma(e^+e^-\rightarrow hadrons)$ Except for controlling each item to the precision requested, stable long term machine and detector performance is crucial.

Our goal: 3% precision

- BESIII collected data at 2.23, 2.4, 2.8 and 3.4 GeV during June 8-16, 2012;
- Total integrated luminosity ~12 pb⁻¹;
- Useful information for machine at low energy;
- The data being used for MC generator tuning;
- Necessary to establish analysis chain;
- Baryon form factors, fragmentation function study underway.

Goal: Improve knowledge of IG_EI/IG_MI by factor 10

- Finer scan around 2.15 GeV: Y(2175)? Where there is also a drop in the pp invariant mass;
- And another drop at 2.9 GeV;
- To explore even lower energy 1.8-2 GeV ? → ISR, Scan?

Phase 3: Charmonium Spectroscopy

- What are these broad resonances?
- Mass resgion where some X, Y, Z particles are found.
- Possible new resonance which are not yet discovered?

- What are these broad resonances?
- Mass resgion where some X, Y, Z particles are found.
- Possible new resonance which are not yet discovered?

Understanding the nature of charmonium resonances:

All possible two-body decays of $\psi(3770)$, $\psi(4040)$, $\psi(4160)$, $\psi(4415)$ need to be included in the fit

$$\begin{split} &\psi(3770) \Rightarrow D\bar{D}; \\ &\psi(4040) \Rightarrow D\bar{D}, D^*\bar{D}^*, D\bar{D}^*, \bar{D}D^*, D_s\bar{D}_s; \\ &\psi(4160) \Rightarrow D\bar{D}, D^*\bar{D}^*, D\bar{D}^*, \bar{D}D^*, D_s\bar{D}_s, D_s\bar{D}_s^*; \\ &\psi(4415) \Rightarrow D\bar{D}, D^*\bar{D}^*, D\bar{D}^*, \bar{D}D^*, D_s\bar{D}_s, D_s\bar{D}_s^*, D_s^*\bar{D}_s^*. \end{split}$$

We need high statistic data taken at each peak position to measure the resonance parameters and to know the cross section of their exclusive decay channels.

- Non-resonant contribution
- Open charm threshold

Outline

- Motivation: $(g-2)_{\mu} \& \alpha_{QED} (M_z^2)$
- Results Energy Scan
- Results Radiative Return
- Conclusions and Future Perspectives

- Tremendous progress over past years in our knowledge of R at low energies
- Pivotal role of Radiative Return technique
- Relevant for determination of QCD parameters
- Precision Test of the Standard Model
- Muon anomaly $(g-2)_{\mu}$:

Improvement by ~factor 3 in knowledge of hadronic vacuum polarization; in ca. 10 years; Timely topic: new FNAL experiment

- Electromagnetic fine stucture constant $\alpha_{em}(m_Z^2)$: After Higgs discovery new quality of electroweak precision fits possible

New e+e- facilities have started data taking or will start shortly

- Upgraded DAPHNE Frascati
 - ISR < 1 GeV
- VEPP-2000 Novosibirsk
 - Energy Scan < 2 GeV
- BES-III @ BEPC-II - ISR < 3 GeV, R scan 2-5 GeV
- BELLE-2 @ Super-KEKB
 ISR < 5 GeV

Within this decade (likely earlier?) further reduction of factor 2 in precision on our knowledge of R not impossible !

Additional slides

Scan of $R_b = \sigma(e+e-\rightarrow bbar)/\sigma(e+e-\rightarrow \mu+\mu-)$ in Bottomonium region

- Identify bbar by event shape
- Asymmetric Y(5S) peak oberserved
- Difficult interpretation (many channels)
- Y(5S) peak obsesved as in BABAR
- Anomalous decay patterns of decays from Y(5S) in lower lying Y resonances

- July 19, 2008: first e⁺e⁻ collision event in BESIII
- Nov. 2008: ~14M ψ (2S) events for detector calibration
- 2009: 106M ψ(2S) 4×CLEO-c **225M J/** ψ **4**×**BESII**
- 2010: ~0.9 fb⁻¹ ψ(3770)
 2011: ~2.0 fb⁻¹ ψ(3770)
 3.5×CLEO-c ~0.5 fb⁻¹ @ 4.01 GeV
- World's largest sample of $J/\psi,\psi(2S)$ and $\psi(3770)$
- 2012: tau mass scan: ~5.0 pb⁻¹; ψ (2S): 0.4B; J/ψ : 1B; J/ψ lineshape, R scan (2.23, 2.4, 2.8, 3.4 GeV)
- 2013: ~0.5 fb⁻¹ @ 4.26, 4.36 GeV and scan in vicinity

- BELLE ISR programme lead to important results on charmonium spectroscopy
- So far no publication on light hadron systems below 3 ... 4 GeV (prelimary result on e+e- $\rightarrow \pi^+\pi^-\pi^0$)
- No clear indication of e.g. Y(4260) resonance which is seen in J/ $\psi \pi \pi$

PRL 98 (2007) 092001	e+e- → D*+D*-, D+-D*-+
PRL 99 (2007) 182004	е+е- → π+π- Ј/ψ
PRL 99 (2007) 142002	е+е- → π+π- ψ(3685)
PRD 77(2008) 011103	$e+e- \rightarrow D^0+D^0bar-, D+-D-$
PRL 100 (2008) 062001	e+e- → D ⁰ +D-π+
PRL 101 (2008) 172001	$e+e- \rightarrow \Lambda_c^+ \Lambda_c^-, \Lambda_c^0 \Lambda_c^0 bar$

Hadronic Cross Section via Radiative Return JGU

Rev. Mod. Phys. 83, 1545-1588 (2011)

49

BABAR: ISR at 10.6 GeV

Features:

- Rely on tagged (=measured) photon for identifying ISR-events
- High fiducial efficiency :

wide-angle ISR-g forces hadronic system into detector fiducial region at large polar angles

- Harder momentum spectrum due to boost
 fewer problems with soft particles;
 allows to go down to threshold
- Can access a very wide mass range in one single experiment: from threshold to 4 ... 5 GeV

Achim Denig

Review of R measurements

IGU

35

 $\chi^+_{\pi}\chi^-\pi^0\chi^0_0)$ [up]

15

Б

5

Cross Section Data from e^+e^-

Achim Denig

Achim Denig

FSR - corrections are model dependent, typically model of scalar QED is used

Relatively large deviations seen ?!

 $e^+e^- \rightarrow \pi^+\pi^-\pi^0\pi^0$

Features:

- Important mode for a_{μ} and α_{QED}
- Preliminary precision: 8% in peak \rightarrow 5%
- Good agreement with SND <1.4 GeV
- Huge improvement >1.4 GeV
- First measurement >2.5 GeV

Comparison KLOE vs. Novosibirsk Experim.

CMD and SND results compared to KLOE09: Fractional difference

Ein erfolgreiches Forschungsgebiet bei BABAR/Stanford:

-
$$e^+e^- \rightarrow \pi^+\pi^-\pi^0$$

- $e^+e^- \rightarrow 2(\pi^+\pi^-), \pi^+\pi^-K^+K^-, 2(K^+K^-)$
- $e^+e^- \rightarrow \pi^+\pi^-\pi^0\pi^0$, $K^+K^-\pi^+\pi^-$, $K^+K^-\pi^0\pi^0$
- $e^+e^- \rightarrow 3(\pi^+\pi^-), 3(\pi^+\pi^-\pi^0), 2(\pi^+\pi^-)K^+K^-$
- $e^+e^- \rightarrow 2(\pi^+\pi^-)\pi^0$, $2(\pi^+\pi^-)\eta$, $\pi^+\pi^-K^+K^-\pi^0$, $\pi^+\pi^-K^+K^-\eta$
- $e^+e^- \rightarrow K^+K^-\pi^0$, $K^+K_S\pi^-$, $K^+K_S\eta$
- $-e^+e^- \rightarrow p\overline{p}$
- $e^+ e^- \rightarrow \Lambda^0 \overline{\Lambda^0}, \, \Lambda^0 \overline{\Sigma^0}, \, \Sigma^0 \overline{\Sigma^0}$

1) Relevante Kanäle für $(g-2)_{\mu}$

- 2) Hadronspektroskopie und J/ψ Verzweigungsverhältnisse
- 3) Nukleon-Struktur durch Messung der zeitartigen Baryon-Formfaktoren

Achim Denig

$$\begin{array}{l} & \begin{array}{l} & \\ & & \\$$

Achim Denig

Review of R measurements

Impact of $\alpha_{cm}(M_Z^2)$

Reduction of uncertainty of $\alpha_{em}(M_Z^2)$: Needed for electroweak physics

 \rightarrow least known input for electroweak precision fits to SM, \rightarrow **Project P2** e.g. Higgs mass prediction

 \rightarrow Project P1: Reduce uncertainty of $\Delta \alpha_{em}^{had(5)}$ by ~factor 2

Achim Denia

A must for future International Linear Collider ILC

Theory contributions to $(g-2)_{\mu}$

Muon Anomaly $(g-2)_{\mu}$

Magnetic Moment: $\vec{m} = \mu_B g \vec{s}_{\mu_B: Bohr magneton, g: gyromagnetic factor ~ 2}$ Muon Anomaly: $a_{\mu} = (g-2)_{\mu} / 2 = \alpha_{em} / 2\pi + ... = 0.001161....$

- Standard Model (SM) prediction aSM:
 - QED: a_{μ}^{QED} = (11 658 471.809 ± 0.015) · 10⁻¹⁰ - weak: a_{μ}^{weak} = (15.4 ± 0.2) · 10⁻¹⁰ - strong: a_{μ}^{strong} = (693.0 ± 4.9) · 10⁻¹⁰

 $a_{\mu}^{SM} = (11\,659\,180.2\pm4.9)\cdot10^{-10}$

SM prediction entirely limited by strong interactions !

 $\gamma \approx \vec{B} - field$ $\mu^{+} \qquad \gamma \qquad \mu^{+}$

• Direct measurement BNL-E821 a_{μ}^{exp} : $a_{\mu}^{exp} = (11\,659\,208.9\pm6.3)\cdot10^{-10}$

Modern e^+e^- particle factories : $\sqrt{s} = m_{\phi(1020)} = 1.02$ GeV bei DA Φ NE $\sqrt{s} = m_{\Upsilon(4S)} = 10.6 \text{ GeV bei PEP-II}$

energy scan impossible over a wide energy range!

Complementary ansatz: Consider events via Initial State Radiation (ISR)

"Radiative Return" to ρ-resonance: $e^+e^- \rightarrow \rho + \gamma \rightarrow \pi^+\pi^- + \gamma$ Measure 2π invariant mass $s_{\pi} = M_{\pi\pi}^{2}$ $\frac{\mathrm{d}\sigma(e^+e^- \rightarrow \pi^+\pi^-\gamma)}{\mathrm{d}M_{\pi\pi}^2}$

66

BABAR Example 2: $e^+e^- \rightarrow \pi^+\pi^-\pi^0\pi^0$

- Second most important contribution for $(g-2)_{\mu}$
- Significant improvement >1.4 GeV
- Precision (preliminary result): 8%
- Analysis on full data (454 fb⁻¹) sample ongoing: ~4% or lower

Achim Denig

Pion Formfactor: KLOE Results

68

Forward-Backward-Asymmetry

Achim Denig

69

Review of R measurements

3

Pion Formfactor: BABAR Results

Achim Denig

70

Review of R measurements

M. Davier et al. ArXiv: 0908.4300

Review of R measurements

Hadronic contribution a_{μ}^{had} can be computed using as input e⁺e⁻ annihilation data

Dispersion integral: $a_{\mu}^{had} = \frac{1}{4\pi^3} \int_{4m_{\pi}^2}^{\infty} ds K(s) \sigma_{had}(s)$

 $s = (p_{e^+}^{(4)} + p_{e^-}^{(4)})^2$ K(s) analytically known ~1/s

Input: hadronic electron-positron cross section data or hadronic τ -decays \rightarrow next talk
Electroweak Precision Physics

- Running of **electroweak mixing angle sin^2\Theta_w** as function of Higgs mass
- After Higgs discovery even more interesting
- Theory curve limited by electromagnetic fine structure constant

$\alpha_{em}(M_Z^2)$ and Electroweak Physics

$\alpha_{em}(M_z^2)$ limiting electroweak precision fits

- \rightarrow Test overall consistency of the electroweak Standard Model
- ightarrow Since the discovery of the Higgs boson more timely than ever

BABAR: Nucleon Form Factors

Achim Denig

ISR-channel $e^+e^- \rightarrow \pi^+\pi^-\pi^0$

Typical features:

- Precision data up to 1.4 GeV from VEPP-2M
- Above 1.4 GeV: BABAR data provides first high-statistics sample ever
- Large deviation seen with DM2
- World's most precise extraction of J/ ψ branching ratio: $\mathcal{B}(J/\psi \rightarrow 3\pi) = (2.18 \pm 0.19)\%$

Magnetic Moment: $\vec{m} = \mu_B g \vec{S}_{\mu_B: Bohr magneton, g: gyromagnetic factor ~ 2}$ Muon Anomaly: $a_{\mu} = (g-2)_{\mu} / 2 = \alpha_{em} / 2\pi + ... = 0.001161....$

- Standard Model (SM) prediction aSM:
 - QED: a_{μ}^{QED} = (11 658 471.809 ± 0.015) · 10⁻¹⁰ weak: a_{μ}^{weak} = (15.4 ± 0.2) · 10⁻¹⁰ hadronic: a_{μ}^{hadr} = (693.0 ± 4.9) · 10⁻¹⁰

 $a_{\mu}^{SM} = (11\,659\,180.2\pm4.9) \cdot 10^{-10}$ Davier et al., 2010 SM prediction entirely limited by hadronic contribution!

Direct measurement BNL-E821 a^{exp}: $a_{\mu}^{exp} = (11\,659\,208.9\pm6.3)\cdot10^{-10}$

77

Collider BEPC-II and BES-III

BEPC-II (since 2009):

- Major upgrade of BEPC and BES-III
- Design luminosity: 10³³ cm⁻²s⁻¹
- R-measurements btw. 2 4.5 GeV

R measurement foreseen in 3 phases

- R in range 2 4.5 GeV
 ~1% statistical, 3% systematic accuracy
 → improve α_{QED}(m_z²) by factor 2
- R in range 2 3 GeV, high statistics \rightarrow Improve nucleon IG_EI/IG_MI ratio
- Fine binning R ratio in charmonium region → charmonium spectroscopy

	PRL 98 (2007) 092001	e+e- → D*+D*-, D+-D*-+
	PRL 99 (2007) 182004	е+е- → π+π- Ј/ψ
	PRL 99 (2007) 142002	е+е- → π+π- ψ(3685)
	PRD 77(2008) 011103	$e+e- \rightarrow D^0+D^0bar-, D+-D-$
	PRL 100 (2008) 062001	e+e- → D ⁰ +D-π+
	PRL 101 (2008) 172001	$e+e- \rightarrow \Lambda_c^+ \Lambda_c^-, \Lambda_c^0 \Lambda_c^0 bar$

ISR programme lead to important results on charmonium spectroscopy

Radiative Return at BELLE

• So far no publication on light hadron systems below 3 ... 4 GeV (prelimary result on e+e- $\rightarrow \pi^+\pi^-\pi^0$)

KLOE: ISR at 1.02 GeV (DAΦNE)

enig

$$\sigma(e^+e^- \to \pi^+\pi^-\gamma_{\rm ISR})$$

Tagged analysis:

ISR photon measured in KLOE-Calorimeter

• Increased amount of Final State Radiation (FSR)

Untagged analysis:

No ISR detection; cut on missing momentum

• Threshold mass region not accessible

*full	KLOE	statistics	2,500	pb ⁻¹
-------	------	------------	-------	------------------

GU

	Publication	Mode	Normalization	Int. Luminosity*
	Phys.Lett. B606 (2005) 12	untagged	Radiator	141 pb ⁻¹
	Phys.Lett. B670 (2009) 285	untagged	Radiator	240 pb ⁻¹
	Phys.Lett. B700 (2011) 102	tagged	Radiator	232 pb ⁻¹
	ArXiv:1212.4524	untagged	μ+μ ⁻ γ	240 pb ⁻¹
2 2	NEW <u></u>			

82

Review of R measurements