0

Achim Denig Benedikt Kloss

Trient 2013

Measurements of Hadronic Cross Sections Using ISR at BES-III

Feasabilities and First Results

very short Motivation: $g-2 \rightarrow I$ think you know this

•
$$a_{\mu}^{SM} = a_{\mu}^{QED} + a_{\mu}^{weak} + a_{\mu}^{hadr}$$

• a_{μ}^{QED} and a_{μ}^{weak} can be calculated with perturbation theory

• but
$$a_{\mu}^{hadr}$$
 not

• get
$$a_{\mu}^{hadr}$$
 from $\sigma(e^+e^- \rightarrow hadr)$

• experimental uncertainty in $\sigma(e^+e^- \rightarrow hadr)$ limits standard model prediction completely

Dispersion integral:

$$a_{\mu}^{hadr} \cong \frac{1}{4\pi^3} \int_{4m_{\pi}^2}^{\infty} K(s) \sigma(e^+e^- \rightarrow hadr) ds$$

Kernel function $K(s) \propto \frac{1}{s}$

5

6

ISR analysis in Mainz

Big bosses: Achim Denig and Frank Maas

hadronic cross sections

channel	name	experiment
$\pi^{\scriptscriptstyle +}\pi^{\scriptscriptstyle -}$	Benedikt Kloss	BES-III
$\pi^{*}\pi^{-}\pi^{0}$	Yaqian Wang	BES-III
$\pi^+\pi^-\pi^0\pi^0$	Martin Ripka	BES-III
$\pi^+\pi^-\pi^0\pi^0$	Konrad Griesinger	BaBar
$\pi^{\scriptscriptstyle +}\pi^{\scriptscriptstyle -}\pi^{\scriptscriptstyle +}\pi^{\scriptscriptstyle -}$	Andreas Hafner	BaBar
	form factor measurements	
$p \overline{p}$	Cristina Morales	BES-III
$n \overline{n}$	Paul Larin	BES-III

Why measuring these cross sections at BES-III?

pi+pi- cross section: very precisely measured at the BaBar and KLOE experiments

 \Rightarrow difference up to 2.0 standard devieations is observed \Rightarrow a reference experiment is needed! \Rightarrow BES-III

Initial State Radiation

Initial State Radiation

Two different analysis types:

- tagged: photon is detected in the Electromagnetic Calorimeter
- untagged: photon leaves the detector (most probable case)

untagged: photon leaves the detector

The BES-III experiment

The BES-III experiment

BEPC-II Collider:

- located in Beijing, China
- symmetric e+e⁻ collider
- 2 GeV < E_{CMS} < 4.6 GeV
- typically fixed CMS energy (J/ ψ (3.096 GeV), ψ (3770), etc.)
- design luminosity: 10³³ cm⁻²s⁻¹
- data taken at $\sqrt{s} = 3.770 GeV$: 2.9 fb⁻¹

The BES-III experiment

BES-III Detector:

- cylindrical drift chamber
- CsI(TI) crystal calorimeter
- Time-Of-Flight system
- muon chamber
- 1T superconducting solenoid magnet

14

Comparison to BaBar and KLOE

Comparison of the experiments

	KLOE	BaBar	BES-III
CMS energy	1.02 GeV	10.58 GeV	3.77 GeV
integrated luminosity	2.5 fb ⁻¹	454 fb ⁻¹	2.9 fb ⁻¹ (10fb ⁻¹)
$\sigma_{p}^{}/p$, IGeV tracks	0.4 %	0.5 %	0.5 %
$\sigma_{\rm E}$ / E , IGeV tracks	5.7 %	3.0 %	2.5 %
ISR methods	tagged and untagged	tagged	tagged and untagged

Comparison to BaBar

- BES-III: high statistics \rightarrow only limited by systematics
- luminosity smaller than the one of BaBar
 - \Rightarrow but softer ISR-Bremsstrahlung \rightarrow higher probability
 - \Rightarrow second effect outweights first one
 - \Rightarrow comparable results to BaBar

Comparison to BaBar

- BES-III; high statistics \rightarrow only limited by systematics
- luminosity smaller than the one of BaBar
 - \Rightarrow but softer ISR-Bremsstrahlung \rightarrow higher probability
 - \Rightarrow second effect outweights first one
 - \Rightarrow comparable results to BaBar

Comparison of the experiments

Conclusion:

feasibility studies of ISR physics at BES-III are promising

 \Rightarrow competitive results to BaBar and KLOE can be expected

First Results

$\pi^+\pi^-\gamma$ analysis (my job)

Event selection:
$$e^+e^- \rightarrow \pi^+\pi^-\gamma_{ISR}$$

E/p	< 0.8
distance to interaction point	R _{xy} < 1.0 cm R _z < 5.0 cm
acceptance	0.4 rad < θ < π – 0.4 rad
to supress $e^+e^- \rightarrow e^+e^-\gamma_{ISR}$	electron PID
# charged tracks	= 2
total charge	= 0
photon energy	> 0.4 GeV
# photons	= 1 (in tagged analysis)= 0 (in untagged analysis)

$\pi^+\pi^-\gamma$ analysis (my job)

$\pi^+\pi^-\gamma$ analysis (my job)

Tagged analysis – 4C kinematic fit

Pions and muons have very similar distributions because of their simalar masses. They can not be seperated with a kinematic fit.

Idea of an Artificial Neural Network:

- from human brain structure
- find connections between several input variables
- calculate a likelihood for signal and background events

Use the TMVA package which is implemented in the ROOT framework.

Strategy:

- I. train the ANN with $\pi^+\pi^-\gamma_{ISR}$ and $\mu^+\mu^-\gamma_{ISR}$ MC samples
- 2. select a clear pion and a clear muon sample in data and study the efficiency differences between data and MC

Input variables:

- Muon Chamber: depth
- Electromagnetic Calorimeter: shower shapes and E/p
- Drift Chamber: dE/dx

TMVA output for classifier: CFMIpANN

output of the Artificial Neural Network

TMVA output for classifier: CFMIpANN

output of the Artificial Neural Network

Conclusion:

ANN seems to achieve good results

Next steps:

- I. select clear muon and pion samples in data
- 2. study the PID efficiency differences between data and MC
- 3. study the with these samples also photon and tracking efficiency

\Rightarrow ongoing at the moment

$\pi^+\pi^-\pi^0\gamma$ analysis (Yaqian Wang)

$\pi^+\pi^-\pi^0\pi^0\gamma$ analysis (Martin Ripka)

HANNES GUTENBERG UNIVERSITÄT MAINZ

Next to do

Study	Status	
tracking efficiency	ongoing 🗸	
photon efficiency	ongoing 🗸	
PID efficiency (neural network)	ongoing 🗸	
background	ongoing 🗸	
systematic uncertainties	ongoing 🗸	
unfolding	after corrections 🗡	

\Rightarrow huge progress in the last months!

Summary

- feasibility studies of ISR physics at BES-III are promising
 ⇒ competitive results to BaBar and KLOE can be expected
- tagged and untagged measurements can be performed at BES-III
- final states under study in Mainz: $e^+e^- \rightarrow \pi^+\pi^-$

$$e^{+}e^{-} \rightarrow \pi^{+}\pi^{-}\pi^{0}$$
$$e^{+}e^{-} \rightarrow \pi^{+}\pi^{-}\pi^{0}\pi^{0}$$

- great progress was made in the last few months
- next to do: systematic corrections and study of uncertainties and backgrounds

Thank you for your attention!

Backup

the Clermont-Ferrand ANN

$$y_{ANN} = \sum_{j=1}^{n_h} y_j^{(2)} w_{j1}^{(2)} = \sum_{j=1}^{n_h} A\left(\sum_{i=1}^{n_{var}} x_i w_{ij}^{(1)}\right) \cdot w_{j1}^{(2)}$$

 $\alpha: x\longmapsto \frac{1}{1+e^{-x}}$

the Clermont-Ferrand ANN

Rank	Variable	Separation
1	MuC depth	$4.74 \cdot 10^{-1}$
2	lateral moment	$3.13 \cdot 10^{-1}$
3	$5 imes 5 \;/\; 3 imes 3$	$3.03\cdot10^{-1}$
4	a20 moment	$2.81\cdot10^{-1}$
5	second moment	$2.80\cdot10^{-1}$
6	${ m E/p}$	$2.76 \cdot 10^{-1}$
7	5×5 / Seed	$1.31\cdot10^{-1}$
8	3×3 / Seed	$8.97\cdot10^{-2}$
9	ϕ	$3.87 \cdot 10^{-2}$
10	dE/dx	$1.03\cdot10^{-2}$

Seperation power of the input variables. Top variable is best ranked.

Correlation Matrix (signal)

- input sample is split into training and test sample
- output of training and test sample have to agree
- \Rightarrow overtraining check

also chosen as input: phi angle ⇒ phi dependence in the Muon Chamber

reason for efficiency differences

