Activity on the design and characterization of front-end electronics in the frame of the PRIN09 project

Luigi Gaioni^a, Alessia Manazza^a, Massimo Manghisoni^{b,a}, Emanuele Quartieri^{c,a}, Lodovico Ratti^{c,a}, Valerio Re^{b,a}, Gianluca Traversi^{b,a}, Stefano Zucca^a

^a INFN sezione di Pavia

^b Università di Bergamo

^c Università di Pavia

PRIN09 Collaboration Meeting, Milan, March 27th 2013

What is in the PRIN09 proposal (FE electronics-wise)

- Optimization of high granularity detection systems for charged particle tracking according to the SuperB SVT requirements – granularity (40-50 um), detection efficiency, power distribution, threshold dispersion, radiation hardness, material budget
 - 40 um pitch MAPS with DNW collecting electrode in a vertically integrated, two-tier, 130 nm CMOS technology
 - 50 um pitch mixed-signal front-end circuits in a vertically integrated, two-tier, 130 nm CMOS technology for hybrid pixel detectors
 - also DNW MAPS (Apsel family) and front-end chips for hybrid pixels in 130 nm planar CMOS technology and MAPS in the INMAPS, 180 nm process were mentioned
- Feasibility study of particle detectors for high precision event timing, using diamond or 3D detectors
 - planar 65 nm and vertically integrated 130 nm CMOS technologies proposed for frontend electronics design
 - jitter and time walk minimization, implementation of timing methods (fractional triggering, time to digital conversion, time to analog conversion, TAC-based TDC, time vernier)

Vertically integrated MAPS (Tezzaron/Chartered)

- Fully functional samples available since last summer, more available in the coming weeks
 - Apsel3DTC samples tested on the SPS beam at CERN
 - **Radiation tolerance tests** on SDR1 chips are in progress

Characterization of the SDR1 and Apsel test structures already covered by Giulia and Alessia this morning

APSELVI and Superpix1 (Tezzaron/Globalfoundries)

- Design of the APSELVI 3D MAPS and of the Superpix1 chip for hybrid pixels is in progress - to be submitted hopefully at the beginning of next Summer
 - some solutions implemented to improve power distribution (voltage drop minimization circuit) and threshold dispersion (threshold correction circuit)
 - on chip pulser for charge sensitivity calibration and general functional tests
 - polarity selection available for signal readout from different kinds of detectors
 - device simulation for best trade-off between noise and charge collection efficiency

Design of the APSELVI and Superpix1 chips already covered by Luigi and Alessia this morning

Apsel4well - MAPS in INMAPS technology

Monolithic sensors in a 180 nm CMOS technology with deep P-well implant

- different technology solutions tested 5 and 12 um epi-layer thickness, standard and high resistivity epi-layer (10¹³ and 10¹⁵ cm⁻³)
- extensive radiation tolerance characterization (bulk damage tests up to 10¹⁴ cm⁻², TID characterization is in progress, planned to reach 10 Mrad total dose)
- quite bad substrate noise problems under investigation

Characterization of the Apsel4well test structures already covered by Stefano Zucca this morning

Integration of heterogeneous layers with T-Micro

- Very high interconnect density, with small bond pads (squares with a side of 5 or 10 μ m, depending on the bump size, 2x2 μ m² or 8x8 μ m²) both on the sensor and the readout sides \rightarrow more room for top metal routing, in particular for power and ground lines, smaller capacitive coupling, less material
- Preliminary test of the T-Micro integration process performed on pre-existing readout chips (SuperpixO) and high resistivity n-on-n pixel sensors (VPix1)

- Front-end chips and a pixel sensor wafer shipped to T-Micro in Dec. 2012
- 5 vertically integrated chips now waiting for customs expenses to be paid

Apsel65 Fast Front-End (FFE) chip

- Developed in a CMOS 65 nm technology (IBM) for the readout of pixel sensors (C_D of the order of 100 fF)
- Relatively fast operation (25 ns peaking time)

8x8 DNW MAPS matrix - digital outputs - outputs of the shapers can be accessed through row and column decoders and read out one at time

3 standalone channel with Cinj and detector simulating capacitor (250 fF, 350 fF, 450 fF)

3x3 DNW MAPS matrix - 9 analog outputs - Digital output of the central pixel - Cinj on central pixel 3 fast-channels with Cinj and detector simulating capacitor (50 fF, 100 fF, 150 fF)

PRIN09 Collaboration Meeting, Milan, March 27th 2013

Fast Front-End standalone channels

Peaking time (at analog buffer out) is close to 25 ns

- Charge sensitivity has an average value of 33 mV/fC. Since output buffer gain ≈ 0.89 $\rightarrow G_Q$ @ shaper output is close to 37 mV/fC (42 mV/fC simulated)
- Noise: ENC=214 e⁻ rms (204 e⁻ rms simulated)

Apsel65 DNW MAPS

🗾 Main design features

- -W/L PA input device: 28/0.25
- Power consumption: 20 µW/cell
- Equivalent noise charge: 38 e-

- Threshold dispersion: 38 e⁻ (main contributions from shaper input device and NMOS and PMOS pair in the discriminator)

- Charge sensitivity: 725 mV/fC
- Peaking time: 300 ns

Same readout scheme (except for components value) for the fast frontend channels which were designed according to the typical specifications associated with the readout of fully-depleted pixel sensors (tp = 25 ns)

PRIN09 Collaboration Meeting, Milan, March 27th 2013

Standalone DNW MAPS

- Peaking time (at analog buffer out) is close to 530 ns (for Qin=800 e⁻) Simulation data: tp=300 ns at shaper out, tp=400 ns at buffer out
- **Recovery time** increases linearly with the signal amplitude (C2 discharged by a constant current source)
- Charge sensitivity has an average value of 760 mV/fC (725 mv/fC simulated)
- Measured ENC is about 10% higher with respect to simulated values

⁵⁵Fe measurements

- 5.9 keV line ≈ 1640 e/h pairs
- With charge entirely collected clear peak @ 200 mV $\rightarrow G_Q$ = 760 mV/fC
- Using ⁵⁵Fe gain calibration: pixel noise 4.6 mV \rightarrow ENC=38e⁻ rms

Low power, high speed threshold discriminators

- Discriminators compatible with applications in high granularity pixel detectors
 - CMOS 65 nm TSMC technology
 - Iow power (< 10 uW), high speed (no more than a few ns delay), small area (fitting in a 50 um pitch pixel, of course together with the other analog and digital blocks), low threshold dispersion (not larger than the noise)</p>

Twofold purpose

- minimize the impact of the discriminator delay on hit time resolution in tracking detectors
- avoid non-linearity at small input charge values in the channel response as seen by the digital section
- Two architectures have been evaluated (classical preampli+shaper analog frontend is assumed)
 - differential stage with mirror load (directly driven by the shaper output)
 - transimpedance amplifier (driven by the shaper output through a transconductor)
- Best trade-off among the above mentioned specifications can be reached by including a 5-bit threshold correction circuit

Low power, high speed threshold discriminators

Discriminator architectures

Current discriminator

PRIN09 Collaboration Meeting, Milan, March 27th 2013

Some results for the voltage discriminator

Version		Delay [ns]	Dispersion [mV]	Current [uA]	FOM
1 uA	HS	5.04	10.09	1.00	50.87
	MD	12.94	2.87	1.00	37.11
	LD	18.32	1.71	1.00	31.35
2 uA	HS	1.26	15.27	2.00	38.41
	MD	4.67	5.58	2.00	52.09
	LD	13.83	1.45	2.00	40.07
5 uA	HS	1.53	8.97	5.00	68.54
	MD	5.37	2.96	5.00	79.43
	LD	11.42	1.37	5.00	78.00
10 uA	HS	0.69	8.21	10.00	56.54
	MD	2.09	3.10	10.00	64.61
	LD	7.15	1.98	10.00	141.17

Threshold correction circuit

PRIN09 Collaboration Meeting, Milan, March 27th 2013