Vertical integration of heterogeneous layers with T-Micro and INMAPS sensor substrate thinning with Aptek

Massimo Manghisoni, Lodovico Ratti

VIPIX Collaboration Meeting, Milan, March 27th 2013

Vertical integration with T-Micro

Very high interconnect density, with small bond pads (squares with a side of 5 or 10 μ m, depending on the bump size, 2x2 μ m² or 8x8 μ m²) both on the sensor and the readout sides \rightarrow more room for top metal routing, in particular for power and ground lines, smaller capacitive coupling, less material

Minimum size	DR1 8x8um bump	DR2 2x2um bump
1. Top metal (Landing pad of bump)		
1.1 size	12 um	4um
1.2 pitch	15um	5um
1.2' Pitch (dummy pad)	15um	5um
1.3 minimum space to scribe edge	10um	10um
2. Pad opening		
2.1 size	10um	3um
2.2 pitch	15um	5um
2.3 minimum pad overlap of pad opening	1um	0.5um

Alignment rules

Markers for rough and fine alignment (through IR imaging), apparently not mandatory

Vertically integrated layers

Preliminary test of the T-Micro integration process performed on pre-existing readout chips (SuperpixO) and high resistivity n-on-n pixel sensors (VPix1)

- Front-end chips and a pixel sensor wafer shipped to T-Micro in Dec. 2012
- 5 vertically integrated chips now waiting for customs expenses to be paid

Recall that a few samples of SuperpixO readout chips and VPix1 sensors have already been bump bonded with IZM

VIPIX Collaboration Meeting, Milan, March 27th 2013

Surface inspection and alignment

T-Micro

Result of Chip stacking

i			1		1		i		February 28,2013
	after surface tre	atment (cleaning)	after bump	lithography	after bum	p formation	after Stacking		Dementer
	ASIC Chip	Sensor Chip	ASIC Chip	Sensor Chip	ASIC Chip	Sensor Chip	(Two alignment r micr	nark images using IR oscope)	Remarks
Chip_01					• • •			0	Only for process optimization (in another chip tray with broken chips)
Chip_02							0	0	
Chip_03							0	0	
Chip_04							0	0	
Chip_05							0	0	
Chip_06							0	0	large alignment error
Chip_07			0				0	0	

VIPIX Collaboration Meeting, Milan, March 27th 2013

Auger electron spectroscopy (AES analysis)

INMAPS chip thinning

- The aim is to understand whether and how the collection properties of quadruple well MAPS are changed by thinning the substrate (low material budget)
- Metallize (if needed) the chip backside after processing, try and increase depleted volume by uniformly applying a negative voltage to the backside

Chip thickness after processing

Processed chips				
Codice	Numero	Descrizione del Chip		
APS-12-HR	16	Chip Apsel4well con substrato di		
		12 um ad alta resistività		
APS-12-LR	16	Chip Apsel4well con substrato di		
		12 um a bassa resistività		
APS-05-LR	30	Chip Apsel4well con substrato di		
		5 um a bassa resistività		

Numero	Codice Chip	Spessore finale [um]	
10	APS-12-HR	25	
10	APS-12-LR	25	
6	APS-12-HR	50	
6	APS-12-LR	50	
15	APS-05-LR	25	
15	APS-05-LR	50	
5	MIMO	50	