

東北大学

SOI Technology for High Energy Physics Applications

Akimasa ISHIKAWA (Tohoku University) For the SOIPIX Collaboration

SOI Technology

- SOI detector is the monolithic detector which has sensor and data processing layers with a fine resolution
 - suitable for HEP.
- Silicon-on-Insulator (SOI) detector consists of three layers
 - Substrate Silicon sensor layer
 - Burried OXide layer (BOX layer)
 - Circuit CMOS layer

SOI Wafer Production (Smart Cut by SOITEC)

Feature, Pros and Cons of SOI for HEP

- Feature
 - No mechanical bonding for readout
 - On pixel processing with CMOS layer
 - Fully depleted sensor with low sense node C
- Pros
 - Small material \rightarrow good resolution
 - Small pixel size \rightarrow good resolution
 - Small parasitic capacitance \rightarrow good S/N
- Cons
 - Back gate effect from sensor bias
 - Not-good radiation tolerance due to hole trapping in BOX layer
 - Crosstalk btw sensor and circuit
 - \rightarrow these three can be solved by double SOI structure

Back gate effect can be also suppressed by Buried P-Well (BPW)

Three SOI Detectors for HEP

- INTPIX
 - General purpose integration type
- CNTPIX
 - General purpose counting type (Binary)
- PIXOR
 - Counting type (Binary)
 - aimed to replace the inner most layer of Belle II SVD
 - Intermediate structure of pixel and strip

Lapis Semiconductor Co Ltd. 0.2 μm FD-SOI pixel process

INTPIX

INTPIX

- Feature
 - Very simple data processing circuit, which consumes area, to reduce the pixel size for better resolution
 - Integration type
 - Smaller cross-talk
 - No timing information available igodot

INTPIX3e

- Parameters for INTPIX3e
 - Pixel size : 16um*16um
 - # of pixels : 192*192
 - Chip size 6mm*6mm
- Tested with high energy beam
 - 1GeV electron beam at Tohoku in 2010
 - Measurement of charged particles tracks with SOI for the first time.
 - 120GeV hadron beam at CERN SPS in Fall 2011
 - Multiple scattering effect can be ignored
 - Two types are tested
 - Thick sensor 260um
 - Thin sensor 100um
 - 4layer-configuration

Beam Test Results for INTPIX3e

- Resolution with thick one
 - resolution achieved is 3.9um
 - Worse than expected
 - But we know that calibration was imperfect and could improve the resolution
- S/N with thin one
 - Thinned to 50um by Nihon Exceed Co.
 - S/N = 15

Event

INTPIX6

- The newest version of INTPIX series submitted on Jan 2013
 - Pixel size : 12um*12um
 - # of pixels : 896*1408
 - Chip size : 12.2mm*18.4mm
- Smaller pixel size and larger chip
 - Aiming 1~2um resolution

- The PIXOR (PIXel OR) readout scheme
 - In a small n by n pixel matrix (called Super-Pixel, n² channels), an analog signal from each pixel is divided into two directions (x and y).
 - N channels from n pixels in each directions are taken analog OR and processed by the circuit on the matrix in order to reduce readout channels (n² → 2n channels), and to make the pixel size smaller.
- Intermediate structure of pixel and strip

PIXOR1 Chip

We have designed the first PIXOR chip

pixel size	25um*40um
# of "OR" ed channels	16
# of pixel in chip	5632
Chip size	5.6mm*5.6mm
trigger latency	5us

- Several TEGs (Test Element Group) in the chip
 - Analog/Discriminator signal-out from each "OR"ed channels.
 - Hit counter synchronized with clock and waits trigger signal for data transfer
 - All digital circuits are not on the pixel unfortunately.

Tohoku Univ.

PIXOR1 Analog readout

- Analog signals after pre-amp and shaper are checked with Xray from Cd109
 - Almost same charges are readout with X and Y readout
- PIXOR scheme working fine!

Sensor thickness 260um

Trigger Logic

- Hit information after discriminator is stored in the buffer
- The nine-bit down counter starts counting the trigger latency time
- After the trigger latency, the hit information and trigger signal are compared, then the AND signal are sent to DAQ system.

B2GM

- PIXOR2 is designed for much more realistic chip
 - Only fired channels send hit address information
 - All digital circuit are on the pixel
- Parameters
 - Pixel size : 35um(r-phi)*70um(z)
 - The resolution should be 10um*20um
 - Size 6.3mm*6.3mm
 - # of "OR"ed channels : 16
- Added functionalities
 - Two hit counters
 - For multi hits in trigger latency
 - Address readout to speed up
 - Address in Super-PIXEL and Address for the Super-pixel

B2GM

20130304 Mask-off capability

Double SOI Structure

Double SOI Wafer

- Back gate effect
 - Shield transistors from bottom electric field
- Radiation Tolerance
 - Compensate electric field generated by the trapped hole in the BOX.
- Crosstalk
 - Reduce crosstalk between sensors and circuits.

Suppression of Back-Gate Effect with Middle-Si layer

a) Middls-Si Floating

Back-Gate Effect is fully suppressed with the Middle Si Layer of fixed voltage.

Nch Core Normal-Vt L/W = 0.2/5.0um Vd=0.1V

Co-60 gamma-ray TID test @ JAERI/Takasaki

Double SOI Test Element Group (TEG) chip (AIST & KEK) During irradiation, all the contacts are set to GND.

Preliminary results of high dose X-ray irradiation test

Caution!: INTPIX3g design has problem and has very low dynamic range!

* Middle SOI voltage = -2V

Cross Talk Simulation

To be tested with real chip

Cross Talk from the circuit to the sensor can be reduced 1/10, and signal shape will be bipolar. \rightarrow disappear in charge amp.

Summary

- SOI technology is suitable for HEP applications
- Two SOI chips are designed for HEP
 - INTPIX for better resolution
 - INTPIX6 aiming for 1~2um resolution
 - PIXOR to replace most inner layer of Belle II SVD
- Double SOI structure to solve
 - Back gate effect
 - Radiation tolerance
 - Cross-talks