Probing the QGP with ALICE at the LHC Leticia Cunqueiro Mendez

INFN Frascati

Introduction: QCD & deconfinement

QCD is the standard theory for the strong interactions

Asymptotic freedom:

at very short distances or very high energies, the forces experienced by strongly interacting particles approach zero

The expected change of nuclear matter into a deconfined state

Stefan Boltzman: $\varepsilon \sim \#$ Degrees of Freedom (DF) in the system

Phase transition (crossover) Low T: Hadron gas-->DF=3 pions

Asymptotically high T-->quark and gluon constituents->DF~30 (depending on # flavours considered)

Where do we expect such a deconfined partonic matter to be formed?

- In the hot early stages of the universe a deconfined state of quarks and gluons survives for some microseconds before the system cools down to ordinary nuclear matter.
- Neutron Stars
- High energy cosmic ray interactions
- Relativistic Heavy Ion Colliders

The phase diagram of nuclear matter

The standard model of a Heavy Ion Collision

• 2 heavy nuclei collide

 $\sqrt{s_{_{NN}}} = 2.76 \ TeV @ LHC$

- Initial state effects gluon saturation, nuclearmodification of the PDFs..
- **Complex initial state conditions** Fluctuations in the distribution of the energy density event by event.
 - Pre-equilibrium phase
- Thermalization? QGP? pQCD, hydrodynamical evolution
- Confinement/hadronization chemical freezout
- Hadron gas
 Kinetic freezout (end of elastic interactions)
- Final reaction products
- i.e. ~1600 particles/y per HI events

The geometry of a Heavy Ion Collision

Number of participants (N_{part}):

number of incoming nucleons (participants) in the overlap region Number of binary collisions (N_{bin}):

number of equivalent inelastic nucleon-nucleon collisions

More central collisions produce more particles

 $N_{bin} \ge N_{part}$

The ALICE detector

ALICE excels at:

- Resolution of tracking and unique particle identification
- Bulk production coverage

Low magnetic field over a large range in momentum and full azimuth

The characterization of the QGP with ALICE

We measure the final products of the reaction to infer transport properties of the QGP

The bulk and the low p_T region (a selection of observables):

- Multiplicity: strong constraint on initial conditions
- Bose-Einstein Pion correlations: volume and lifetime of the source
- Identified particle spectra: radial velocity and temperature at the kinetic freezout
- Elliptic flow and higher harmonics: precision measurements of the shear viscosity

The characterization of the QGP with ALICE

We measure the final products of the reaction to infer transport properties of the QGP

Hard probes:

- High p_T hadrons and jets-->Jet quenching-->measure medium density
- Heavy flavour: testing in medium radiation hierarchy
- Quarkonia: testing mechanisms of screening/regeneration in medium

The first observable: the multiplicity

The centrality dependence of particle multiplicity puts strong constraints on theoretical models and initial state conditions

What is the energy density measured in ALICE?

1

The size & lifetime of the source: pion interferometry

The temperature of the source

Direct photon measurement via conversions in central PbPb collisions. A thermal system \rightarrow exponential spectrum Fit the low p_T region to a combined fit (Exponential+Hagedorn):

$$T \sim 300 \text{ MeV} \sim 2^* T_{\text{critical}}$$

The radial flow: collective transverse expansion

Boosted thermal spectra give a very good description of the particle distributions measured in PbPb:

$$\frac{d^{2}N_{j}}{m_{T}dydm_{T}} = \int_{0}^{R_{o}} A_{j}m_{T} \cdot K_{I} \left(\frac{m_{T}\cosh\rho}{T}\right) \cdot I_{0} \left(\frac{p_{T}\sinh\rho}{T}\right) dr$$

$$\rho(r) = \tanh^{-1}\beta_{\perp}(r)$$

$$\beta_{c} \text{ (radial flow)} = 0.66 \text{ c}$$

$$T_{KIN} \sim 80 \text{ MeV}$$

15

The elliptic flow v_2 and the perfect liquid

Fourier expansion to describe angular dependence of particle density wrt reaction plane

$$\frac{dN}{d\varphi} \propto 1 + 2v_2 \cos[2(\varphi - \psi_R)] + \dots$$

$$v_2 = \langle \cos[2(\varphi - \psi_R)] \rangle$$
¹⁶

Higher order v_n coefficients

Energy density in overlapping region

Different initial state conditions generate <u>different symmetry planes</u> \rightarrow different flow coefficients v_n are present in the final particle distributions

Precise constraint of transport properties: shear viscosity

TT TIME DOTE

- Large v2 indicates early thermalization
- Great success of viscous hydrodynamics: shear viscosity close to the lower bound (AdS/CFT lower bound=0.08)

Higher orders vn-->constrain initial conditions, needed for hydro calculations

 \rightarrow precise determination of η /s

The system behaves as an almost perfect liquid, strongly coupled+low shear viscosity !

Precise characterization of the QGP: Hard Probes

 $\sigma^{pp \to h} = f_p(x_1, Q^2) \otimes f_p(x_2, Q^2) \otimes \sigma(x_1, x_2, Q^2) \otimes D(z, Q^2) + \left(\frac{1}{Q^2}\right)$

- Early production of the hard scattering: t~1/Q
- Long distance terms of the σ can be directly modified by the dense medium created in the HIC
- The probe production rate is the same as in the vacuum
 → well calibrated probes

Look for the attenuation/absorption of the probe

Precise characterization of the QGP: Hard Probes

 $\sigma^{pp \to h} = f_p(x_1, Q^2) \otimes f_p(x_2, Q^2) \otimes \sigma(x_1, x_2, Q^2) \otimes D(z, Q^2) + \left(\frac{1}{Q^2}\right)$

- Early production of the hard scattering: t~1/Q
- Long distance terms of the σ can be directly modified by the dense medium created in the HIC
- The probe production rate is the same as in the vacuum
 → well calibrated probes

Look for the attenuation/absorption of the probe

The "standard" mechanisms of energy loss in medium

Medium-induced gluon radiation, dominant mechanism of energy loss for a high energy parton traversing a colored medium.

Baier, Dokshitzer, Mueller, Peigne, Shift Nucl. Phys. B 483 (1997) 291

The "standard" mechanisms of energy loss in medium

Medium-induced gluon radiation, dominant mechanism of energy loss for a high energy parton traversing a colored medium.

Baier, Dokshitzer, Mueller, Peigne, Shift Nucl. Phys. B 483 (1997) 291

Energy loss & transverse broadening of the jet shower dynamically related by: $\Delta E \sim qhat \Delta k_{T}$

Energy degradation and broadening of the transverse jet shape

The "standard" mechanisms of energy loss in medium

Energy degradation and broadening of the transverse jet shape

Starting with the "easy" things: high- p_T hadrons

Nuclear Modification Factor (R_{AA}): measures the suppression of the yield in PbPb collisions with respect to the scaled yield in pp

High- p_T hadron suppression vs Reaction Plane

The full scan of high- p_T hadron suppression

Different collaborations and systems

To note:

→ Low p_T region: dominated by non perturbative processes and initial state effects

→ High p_{T} region: suppression due to final state effects

→ Rise with p_T : bias towards partons produced in the surface of the fireball that are not (are less) medium-modified

R_{AA}->not enough discriminatory power for energy loss models Small constrain on energy loss distribution (T.Renk HP06) Need multiple/more differential observables to constrain theory

The suppression of recoiling hadrons: I_{AA}

Trigger on a hadron with p_{T}^{trig} :

look to the particles with p_{T}^{assoc} in its near and away side

- The hadrons that are azimuthally back-to-back to the trigger are suppressed by a factor 2 (compare to ~1/5 suppression for inclusive h)
- Why is the suppression of recoiling hadrons less than that of inclusive hadrons?
 -the recoil hadron spectrum is harder (flatter) and the smearing due to energy loss has less impact (the dynamical range to probe quenching is smaller)

The Heavy Flavour

Dead cone effect

$$\omega \left. \frac{dI}{dw} \right|_{\text{HEAVY}} = \frac{\omega \left. \frac{dI}{dw} \right|_{\text{LIGHT}}}{\left(1 + \left(\frac{m_Q}{E_Q} \right)^2 \frac{1}{\theta^2} \right)^2}$$

Implies lower heavy quark energy loss in colored matter Dokshitzer PLB (2001) 519 199

This sets a hierarchy in the energy loss of partons in a QCD medium:

ΔEloss(g)> ΔEloss(light quarks)> ΔEloss(Heavy quarks)

(note that dl/dw~CF)

The heavy flavour: R_{AA} for D mesons

corrections on the energy loss of ~10% for a D quark of 10 GeV

Heavier mesons with b content will allow to explore mass modification of the R_{AA} in a wider range of p_T

The heavy flavour: quarkonia

 $\sigma^{hh \to J/\Psi} = f_i(x_1, Q^2) \otimes f_j(x_2, Q^2) \otimes \sigma^{ij \to [c\bar{c}]}(x_1, x_2, Q^2) \langle \mathcal{O}([c\bar{c}] \to J/\Psi) \rangle$

The heavy flavour: quarkonia

 J/ψ suppression compared to theoretical models + regeneration component from deconfined charm quarks in the medium that contributes to about the 50% of the measured yield

For the first time, non zero v_2 , also in qualitative agreement with models including regeneration

JETS

Single hadron measurements are limited: only sensitive to the longitudinal energy loss Probe full dynamics of jet quenching \rightarrow reconstruct jets

Jet reconstruction in Heavy Ion Collisions is challenging! Complex interplay between medium modifications $\leftarrow \rightarrow$ background $\leftarrow \rightarrow$ jet finding

LNF group is main contributor to jet physics@LHC

1. ALICE JET RESULTS:

-ALICE first publication on Heavy Ion Jets,

"Measurement of event background fluctuations for charged particle jet reconstruction in PbPb collisions at 2.76 TeV" JHEP 1203 (2012) 053.[Cunqueiro primary author]

-Charged jet spectrum, upcoming publication

-Full jet spectrum, upcoming publication

-Hadron-jet and recoil jet spectrum, upcoming publication, [Cunqueiro primary author]

LNF group is main contributor to jet physics@LHC

1. ALICE JET RESULTS:

-ALICE first publication on Heavy Ion Jets,

"Measurement of event background fluctuations for charged particle jet reconstruction in PbPb collisions at 2.76 TeV" JHEP 1203 (2012) 053.[Cunqueiro primary author]

-Charged jet spectrum, upcoming publication

-Full jet spectrum, upcoming publication

-Hadron-jet and recoil jet spectrum, upcoming publication, [Cunqueiro primary author]

2. Detector and online development for jet physics in the LNF group:

-Calorimeter construction: EMCAL/DCAL proyect To recover the full jet energy and to study correlations -Online High Level Trigger To select jetty events and increase statistics

Large LNF effort, not discussed here

LNF group is main contributor to jet physics@LHC

3. <u>Phenomenological studies</u> of jet quenching and first interpretation of LHC data, Collaboration with Santiago de Compostela theory group and with LNF theory department:

"Medium evolved fragmentation functions" [Armesto,Cunqueiro,Salgado,Xiang]JHEP 0802 (2008)

"QPYTHIA:a medium-modified implementation of final state radiation" [Armesto,Cunqueiro,Salgado],Eur.Phys.Jour C61(2009)

"Angular-ordered parton showers with in-medium modified splittings" [Armesto,Corcella,Cunqueiro,Salgado],JHEP0911 (2009)122

"Analysis of the influence of background subtraction and quenching on jet observables" [Apolinario,Armesto,Cunqueiro] JHEP1302 (2013)022

What is a Jet?

36

What is a Jet in a Heavy Ion Collision?

@LEP →

← In ALICE

Jet Finder and inputs (only for experts)

Anti-k_T Algorithm from FastJet^{*} package

- Resolution parameter R = 0.2, 0.3, 0.4
- Area cut A > 0.1-0.4 avoids extremes
- Jet vector from boost invariant
 p_T recombination scheme
- Charged Jets
 - Input: tracks with p_{τ} > 150 MeV/c
 - Advantage: full azimuth (ϕ) coverage
- Fully reconstructed jets
 - Input
 - Tracks with $p_{_{\rm T}}$ > 150 MeV/c
 - EMCAL clusters $E_{\tau}^{clus} > 150$ MeV after correction for energy from charged particles
 - Jet required to be fully contained in EMCAL acceptance
 - Advantages: trigger capability, higher $p_{_{T,Jet}}$ reach, unbiased fragmentation

M. Cacciari, G.P. Salam and G. Soyez,

Eur.Phys.J. C72 (2012) 1896 [arXiv:1111.6097]

 $\begin{array}{l} \underline{\text{Distance Definition}}\\ D_{ij} = \min\left(p_{\mathrm{T}\,i}^{2p}, p_{\mathrm{T}\,j}^{2p}\right) \frac{\Delta R_{ij}^{2}}{R^{2}}; D_{i} = p_{\mathrm{T}\,i}^{2p}\\ k_{T}(\operatorname{anti} k_{\mathrm{T}}): p = 1(-1)\\ \text{Compute all } D_{ij}, \ D_{i}, \ d = \min\left(D_{ij}, D_{i}\right)\\ \text{if } d = D_{ij}: \ \text{combine } i \text{ with } j\\ \text{if } d = D_{i}: \ i \ \text{ is final state jet} \end{array}$

Jets in ALICE

ALICE JHEP 1203 (2012) 053

 $\rho \sim 140 \text{ GeV}/\text{area}$ in a 0-10% central collision

ALI-PERF-14052

means 70 GeV of background contamination inside the jet

Jets in ALICE

ALICE JHEP 1203 (2012) 053

ALI-PERF-44505

 $\rho \sim 140 \text{ GeV}/\text{area}$ in a 0-10% central collision

means 70 GeV of background contamination inside the jet

Background not homogeneous:

→ region-to-region deviations from the average ρ displaying a non gaussian shape with σ =11 GeV for R=0.4.

Tail to the right, source of large upward fluctuations on the jet energy.

Jets in ALICE

LHC2010 Pb-Pb (s=2.76 TeV Charged Jets 1/N_{coll}1/N_{evts}dN/dp Anti- k_{τ} , R = 0.4 p_track > 0.15 GeV/c 10 10⁻³ 0-10% 10-30% 10 10⁻⁵ - 30-50% 10⁻⁶ 50-80% 10-7 10^{-8} 10⁻⁹ 10^{-10} -20 60 80 20 100 40 n 40 120 p_{T} (GeV/c) = p_{Tjet}^{rec} - ρA

The raw charged jet spectrum

ALI-PERF-13266

- Fluctuations smear the jet energy enhancing the jet yield up to high jet p_T
- Low-moderate jet p_{τ} is dominated by fakes
 - →correct by unfolding

ALICE is the only experiment that reconstructs jets using a minimum cutoff on particles of 0.15 GeV \rightarrow least fragmentation bias on the jet population!

Inclusive charged jet spectra and R_{AA}

I: R_{AA} for R=0.3 is not very different to R_{AA} for single hadrons!

II: Energy distribution within a cone of R=0.3 is not very different (within large systematic errors) from PYTHIA's

To Note: lower limits in jet p_T are set by the unfolding instabilities due to fake jets

A possible interpretation

- Jet suppression comparable to hadron suppression
- No hints of broadening inside the cone

?

- Radiation happens outside the jet cone
- Jet constituents loose energy proportionally to the fraction of the jet energy they carry: $\Delta E_{part} = z \Delta E$

Comparison to CMS

- CMS measures compatible suppression for high energy jets
- CMS high energy jets exhibit a flat dependence with jet p_T
- ALICE lower energy jets show p_T dependent suppression

The yield of 300 GeV jets is suppressed in a factor 2!

ALICE recoil jets and jet structure

<u>Goal</u>: precise measurement of jet structure and modifications due to quenching

ightarrow minimize fragmentation bias on jet population

ALICE recoil jets and jet structure

Conjecture: combinatorial background distribution is independent of trigger p₁

p_{T,jet}< 20 GeV/c: uncorrelated with trigger p_T
 -consistent with dominance by combinatorial jet contribution
 p_{T,jet}>20 GeV/c: correlated with trigger p_T
 -consistent with dominance by hard jets from the same hard scattering

ALICE recoil jets and jet structure

1. Combinatorial background distribution is independent of trigger p_{T} <u>Opportunity</u>: removal of combinatorial jets via DIFFERENCE of triggered distributions: Δ_{recoil}

2. Difference distribution Δ_{recoil} contains only correlated hard jet component

3. Still smeared in energy by the underlying event \rightarrow correct by unfolding

Recoil jet structure: ΔI_{AA}^{PYTHIA} and R dependence

Similar ΔI_{AA}^{PYTHIA} for R=0.2 and R=0.4

→ little, if any, energy redistribution within R=0.4 relative to PYTHIA reference

Working on reducing the systematics!

Competing measurements on the jet structure

ATLAS MEASUREMENTS of low pT JET STRUCTURE

Clear evidence for energy redistribution at low jet p₁<40 GeV

Note that ATLAS has an hadronic calorimeter and thus the jet finding input has a higher minimum energy cutoff than ALICE tracks

The picture for jet quenching that emerges from data

1. Different collaborations:

different jet p_T ranges, different minimum p_T cut-off, different biases, different jet finding algorithms, different input to jet finding, different background subtraction techniques, different interplay between the detector and background response....

The picture for jet quenching that emerges from data

- 2. What is observed so far:
- The jet energy is not recovered within R=0.3,0.4 (ALICE)
- No apparent signals of broadening within R=0.3,0.4 in high energy jets (ALICE)
- Hints for transverse modifications of jets at low jet energies (ALICE-ATLAS)
- Excess of events with large momentum imbalance where the energy is recovered at very large angle (R>0.8) in the form of very soft particles (CMS)
- Coplanarity of dijets: the subleading looses energy but does not change direction (CMS)

The picture for jet quenching that emerges from data

4. Comparisons to theory ongoing: lot's of joint effort to define strategies and observables

Theory-experiment comparisons

ALICE most recent results: pPb collisions

pPb collisions are the major benchmark for PbPb collisions as they address cold nuclear effects

pPb collisions ... not only a benchmark for PbPb

- They probe nucleus structure at unprecedent QCD regime of very low x
- The double ridge seen by ALICE makes pPb collision an interesting physics topic on its own

pPb: long range dihadron correlations!

pPb collisions...not only a benchmark for PbPb

Long dihadron correlations in the near side and in the away side Phys.Lett. B 719 (2013)

CCG? Hydrodinamics? Origin not yet understood....

Physics Perpectives (for LNF)

LNF group is now participating in the Inner Tracking System upgrade, <u>it will</u> <u>be the national production center coordinating the assembly of the</u> <u>detector</u>

Outer Barrel (OB): 4 layers pixels Radial position (mm): 200, 220, 410, 430 Length in z (mm): 843, 1475 Nr. of modules: 48, 52, 96, $102 \rightarrow 298$ Nr. of chips/module: 28, 28, 52, 52 Nr. of chips/layer: 2688, 2912, 9600, 10200 $\rightarrow 25400$ Pixel size: \sim 20 µm x 20 µm or bigger Material thickness: $\sim 0.8\% X_0$ Power density: ? Throughput: < 6 Mbit / sec \cdot cm²

New interesting possibilities for heavy flavour jet tagging

Physics Perpectives (for LNF)

LNF group is now participating in the Inner Tracking System upgrade, <u>it will</u> <u>be the national production center coordinating the assembly of the</u> <u>detector</u>

The upgrade will allow for:

- High read-out rate
- Improved resolution
- New possible charm and beauty measurements: -D down to p_T~0 -B meson

-
$$\Delta_{
m b}$$
, $\Delta_{
m c}$ baryons

New interesting possibilities for heavy flavour jet tagging

Summary and outlook

- LHC measures a larger, hotter, denser, longer lived and more opaque source than at RHIC
- The measurements of bulk properties confirm the great success of hydrodynamics in Heavy Ion Collisions.
 →precision measurements of shear viscosity η/s

Summary and outlook

- LHC measures a larger, hotter, denser, longer lived and more opaque source than at RHIC
- The measurements of bulk properties confirm the great success of hydrodynamics in Heavy Ion Collisions.
 →precision measurements of shear viscosity η/s

ALICE jet program is fully competitive. Unique/new analysis ongoing and interesting new results foreseen

LNF is one of the main contributors (hardware/online/analysis) to the jet "golden channel" for the QGP study

Summary and outlook

- LHC measures a larger, hotter, denser, longer lived and more opaque source than at RHIC
- The measurements of bulk properties confirm the great success of hydrodynamics in Heavy Ion Collisions.
 →precision measurements of shear viscosity η/s

ALICE jet program is fully competitive. Unique/new analysis ongoing and interesting new results foreseen

LNF is one of the main contributors (hardware/online/analysis) to the jet "golden channel" for the QGP study

Towards a quantitative characterization of the fundamental "transport" properties of the medium:qhat

 \rightarrow Jets are great tools but there is a long road ahead

The ALICE experiment

How we reconstruct jets in ALICE (only for experts)

- **Input**: a) charged tracks fromt TPC and ITS $p_T > 0.15$ GeV Low p_T cut-off allows for an unbiased jet reconstruction
 - b) charged tracks+EMCAL clusters

-Emcal towers (E_T>0.05 GeV) are grouped into clusters.
-Only one local maximum is accepted per cluster
-A minimum energy per cluster is required E_{cluster}>0.3 GeV
-Emcal clusters are matched to tracks and the double counting due to charged particle shower energy is removed.

Jets are reconstructed using antik_T using a p_T boosted recombination scheme.

Only jets that are fully contained in the acceptance are accepted:

 $|\phi_{jet}| < \phi_{acceptance} - R$ $|\eta_{jet}| < \eta_{acceptance} - R$

Background contamination is corrected on an event by event basis usign area-based method Cacciari et al arXive:0802.1189

Background fluctuations and detector effects (tracking efficiency main contribution to JES,5%) are corrected via unfolding

The dependence on the jet R

$$<\delta p_T>=<\delta p_T^H>+<\delta p_T^P>+<\delta p_T^{UE}>$$

Har radiation, UE and hadronization splash out

 $< \delta p_T^P > \approx \log R + \mathcal{O}(1)$ $< \delta p_T^{UE} > \approx R^2 + \mathcal{O}(R^4)$ $< \delta p_T^H > \approx -\frac{1}{R} + \mathcal{O}(R)$

 δp_T measures the difference between the measured jet p $_T$ and the original parton p_T

Note that the UE (*underlying event:energy in the pp event which is not correlated with the hard scattering*) enters as ~R² In heavy ions, this constraints us to low-moderate jet R~0.4 In pp, no limit (except for acceptance) on maximum R.

Combinatorial background and unfolding

The unfolding is a **linear** method that **conserves** total number of jets.

If in your measured sample at a certain jet p_T you have large contribution from **fake jets** (soft particles clusterd by the algorithm, uncurrelated with hard processes) and they enter the unfolding, then the **unfolded solution will be wrong**.

I HIC we are interested on looking to low energy jets, which are expected to be modified more by the medium, and we are interested on large R to explore energy redistirbution at large angles.

-the unfolding of the inclusive spectrum is limited in min p_{τ} and R

Different approaches to the problem:

Introduce biases: require a leading hadron of more than X GeV (but this biases your jet fragmentation)
-consider correlation measurements to suppress combinatorial background
-tagging on heavy flavour jets?

13

PID RAA

Dead cone effect?

Implies lower heavy quark energy loss in matter Dokshitzer PLB (2001) 519 199

ALI-PREL-14286

Similar suppression at high p_T for all particle species, including charm.

ATLAS RCP and R dependence

Some change in the suppression observed at larger $R \sim 0.5$ -->but also large systematics ⁶⁷