11 April 2013 Roma Tre

DM Indirect and Direct Detection phenomenology: some anomalies and a status assessment

Marco Cirelli (CNRS IPhT Saclay)

11 April 2013 Roma Tre

DM Indirect and Direct Detection phenomenology: some anomalies and a status assessment

Marco Cirelli (CNRS IPhT Saclay)

DM exists

DM exists

galactic rotation curves

weak lensing (e.g. in clusters)

'precision cosmology' (CMB, LSS)

DM exists

galactic rotation curves

^{&#}x27;precision cosmology' (CMB, LSS)

DM is a neutral, very long lived, feebly interacting particle.

DM exists

galactic rotation curves

weak lensing (e.g. in clusters)

^{&#}x27;precision cosmology' (CMB, LSS)

DM is a neutral, very long lived, feebly interacting particle.

Some of us believe in the WIMP miracle.

- weak-scale mass (10 GeV 1 TeV)
- weak interactions $\sigma v = 3 \cdot 10^{-26} \text{cm}^3/\text{sec}$

- give automatically correct abundance

DM detection

direct detection

Xenon, CDMS (Dama/Libra?)

production at colliders

γ from annihil in galactic center or halo and from synchrotron emission Fermi, HESS, radio telescopes

\indirect e

from annihil in galactic halo or center PAMELA, Fermi, AMS-02 from annihil in galactic halo or center

from annihil in galactic halo or center

GAPS

 $\overline{
u}$ from annihil in massive bodies

Icecube, Km3Net

DM detection

direct detection

production at colliders

 $\begin{array}{c} \gamma \ \text{from annihil in galactic center or halo} \\ \text{and from synchrotron emission} \\ \text{Fermi, HESS, radio telescopes} \\ \end{array}$

DM detection

direct detection

production at colliders

γ from annihil in galactic center or halo and from synchrotron emission Fermi, HESS, radio telescopes

\indirect e

from annihil in galactic halo or center PAMELA, Fermi, AMS-02 from annihil in galactic halo or center from annihil in galactic halo or center GAPS

Charged CRs

1. the PAMELA/Fermi/HESS 'excesses'

Indirect Detection: basics *p* and *e*⁺from DM annihilations in halo

	Galac	tic Bulge	Norma Arm	
Scutum	Arm			Crux Arm
Outer Arm	. Jimo			Carina Arm
				1.
No. or and	0. PP			
			Same an	State of the second
have			Service Contraction	
Perseus Arm				
	· Jun		- martin)	
	Sagittarius Arm 🍼 *		Sun	Local Arm

Indirect Detection: basics *p* and *e*⁺from DM annihilations in halo

What sets the overall expected flux? ${
m flux} \propto n^2 \, \sigma_{
m annihilation}$

What sets the overall expected flux? flux $\propto n^2 \sigma_{\rm annihilation}$ astro& particle

What sets the overall expected flux? flux $\propto n^2 \sigma_{\text{annihilation}}$ astro& $\sigma_{v} = 3 \cdot 10^{-26} \text{cm}^3/\text{sec}$

DM halo profiles

At small r: $\rho(r) \propto 1/r^{\gamma}$

6 profiles: cuspy: NFW, Moore mild: Einasto smooth: isothermal, Burkert EinastoB = steepened Einasto (effect of baryons?)

simulations:

DM halo	α	$r_s \; [\mathrm{kpc}]$	$\rho_s \; [{\rm GeV/cm^3}]$
NFW	_	24.42	0.184
Einasto	0.17	28.44	0.033
EinastoB	0.11	35.24	0.021
Isothermal	_	4.38	1.387
Burkert		12.67	0.712
Moore	_	30.28	0.105

Indirect Detection: basics

DM DM

 $W^-, Z, b, \tau^-, t, h \dots \rightsquigarrow e^{\mp}, p, D^{(-)}, \dots$

primary channels

 $\cdot W^+, Z, \overline{b}, \tau^+, \overline{t}, h \dots \rightsquigarrow e^{\pm}, \stackrel{(-)}{p}, \stackrel{(-)}{D} \dots$

Indirect Detection: basics

$W^-, Z, b, \tau^-, t, h \dots \longrightarrow e^{\mp}, \stackrel{(-)}{p}, \stackrel{(-)}{D} \dots$ decay primary

channels

DM

DM

 $\cdot W^+, Z, \overline{b}, \tau^+, \overline{t}, h \dots \longrightarrow e^{\pm}, \stackrel{(-)}{p}, \stackrel{(-)}{D} \dots$

positron fraction

antiprotons

electrons + positrons

Positrons & Electrons Positrons from PAMELA:

steep e⁺ excess
above 10 GeV!
very large flux!

(9430 e⁺ initially collected) (errors statistical only in this plot, that's why larger at high energy)

Positrons & Electrons Positrons from PAMELA and FERMI:

steep e⁺ excess
above 10 GeV!
very large flux!

positron fraction:

Adriani et al., Nature 458 (2009) 607; ApP 34 (2010) 1 Fermi coll., 1109.0521

Positrons & Electrons Positrons from PAMELA and FERMI and AMS-02:

steep e⁺ excess
above 10 GeV!
very large flux!

Antiprotons from PAMELA:

- consistent with the background

(about 1000 \bar{p} collected initially)

Indirect Detection: hints Electrons + positrons adding FERMI and HESS:

- no $e^+ + e^-$ excess
- spectrum $\sim E^{-3.04}$
- a (smooth) cutoff?

positron fraction

antiprotons

electrons + positrons

Are these signals of Dark Matter?

positron fraction

antiprotons

PAMELA 2008

PAMELA 2010

1000

100

electrons + positrons

Are these signals of Dark Matter?

TES: few TeV, leptophilic DM with huge $\langle \sigma v \rangle \approx 10^{-23} \, {\rm cm}^3/{\rm sec}$

positron fraction

antiprotons

electrons + positrons

Are these signals of Dark Matter?

TES: few TeV, leptophilic DM with huge $\langle \sigma v \rangle \approx 10^{-23} \, {\rm cm}^3/{\rm sec}$

NO: a formidable 'background' for future searches
PS: post AMS 2013

positron fraction

antiprotons

PAMELA 2008 PAMELA 2010

1000

100

electrons + positrons

Are these signals of Dark Matter?

YES: one TeV, leptophilic DM with huge $\langle \sigma v \rangle \approx 10^{-23} \, \mathrm{cm}^3/\mathrm{sec}$ 'tension' between positron frac and e⁺+e⁻

Gamma constraints

DM DM $\rightarrow \mu^+\mu^-$, NFW profile

Bertone, Cirelli, Strumia, Taoso 0811.3744

The PAMELA +FERMI regions are in conflict with gamma constraints, unless...

Gamma constraints

Bertone, Cirelli, Strumia, Taoso 0811.3744

Gamma constraints

Bertone, Cirelli, Strumia, Taoso 0811.374

$\begin{array}{c} \textbf{Gamma constraints} \\ \gamma \text{ from Inverse Compton on } e^{\pm} \text{ in halo} \end{array}$

DM DM $\rightarrow \mu\mu$, Einasto profile

10^{-20} 10^{-20} 10^{-21} 10^{-21} 10^{-22} 10-22 $[\text{cm}^3/\text{s}]$ 10-23 Ъ 10^{-24} FERMI $3^{\circ} \times 3^{\circ}$ FERMI $5^{\circ} \times 30^{\circ}$ FERMI $10^{\circ} - 20^{\circ}$ 10^{-25} 10^{-2} FERMI Gal. Poles W. natural' scal 10^{-26} 10^{2} 10³ 10^{4} m_{χ} [GeV]

DM DM $\rightarrow \tau \tau$, Einasto

Cirelli, Panci, Serpico 0912.0663

Cirelli, Panci, Serpico 0912.0663

PS: post AMS 2013

Theorist's reaction

Theorist's reaction

1. the 'PAMELA frenzy'

Challenges for the 'conventional' DM candidates

Needs:	SuSy DM	KK DM
- TeV or multi-TeV masses	difficult	ok
- no hadronic channels	difficult	difficult
- very large flux for any Majorana DM, s-wave annihilation cross sec $\sigma_{nn}(DMD\bar{M} \rightarrow f\bar{f}) \propto \left(\frac{m_f}{m_f}\right)$	tion 2^{2}	ok

Enhancement How to reconcile $\sigma = 3 \cdot 10^{-26} \text{ cm}^3/\text{sec}$ with $\sigma \simeq 10^{-23} \text{ cm}^3/\text{sec}$?

- DM is produced non-thermally: the annihilation cross section today is unrelated to the production process

at freeze-outtoday- astrophysical boostno clumpsclumps- resonance effectoff-resonanceon-resonance- Sommerfeld effect $v/c \simeq 0.1$ $v/c \simeq 10^{-3}$ + (Wimponium)

Sommerfeld Enhancement

NP QM effect that can enhance the annihilation cross section by orders of magnitude in the regime of small velocity and relatively long range force.

Sommerfeld Enhancement

NP QM effect that can enhance the annihilation cross section by orders of magnitude in the regime of small velocity and relatively long range force.

In terms of Feynman diagrams:

Hisano et al. hep-ph/0412403

First order cross section:

Adding a rung to the ladder: $\times \left(\frac{\alpha M}{m_W}\right) \quad \tilde{\chi}^0$

For $\alpha M/m_V \gtrsim 1$ the perturbative expansion breaks down, need to resum all orders i.e.: keep the full interaction potential.

Model building

- Minimal extensions of the SM: heavy WIMPS (Minimal DM, Inert Doublet) Cirelli, Strumia et al. 2005-2009

Tytgat et al. 0901.2556

- More drastic extensions: New models with a rich Dark sector

M.Pospelov and A.Ritz, 0810.1502: Seclude mal DM - Y.Nomura and J.Thaler, 0810.5397: DM through the Axion Portal - R.Harnik and G.Kribs. 0810.5557: Dirac DM - D.F . 0810.5762: Hidden Sector - T.Hambye. 0811.0172: Hidden Vector - K.Ishiwata. S.Matsumoto, T.Moroi, 0811.0250: Superparticle DM - Y.Bai and Z.Han, 0811.0387; sUED DM - P.Fox, E.Poppitz, 0811.0399: Leptophilic DM - C.Chen, F.Takahashi, T.T.Yanagida, 0811.0477; Hidden-Gauge-Boson DM - E.Ponton, L.Randall, 0811.1029; Singlet DM - S.Baek, P.Ko, 0811.1646; U(1) Lmu-Ltau DM - I.Cholis, G.Dobler, D.Finkbeiner, L.Goodenough, N.Weiner, 0811.3641: 700+ GeV WIMP - K.Zurek, 0811.4429: Multicomponent DM - M.Ibe, H.Muravama, T.T.Yanagida, 0812.0072: Breit-Wigner enhancement of DM annihilation - E.Chun, J.-C.Park, 0812,0308; sub-GeV hidden U(1) in GMSB - M.Lattanzi, J.Silk, 0812,0360; Sommerfeld enhancement in avs DM - Zhang, Bi, Liu, Liu, Yin, Yuan, Zhu, 0812.0522: Discrimination with SR and IC - Liu, Yin, cold substructures - M.Pospelov, M.Trott, 0812.0432: super-WIMPs deca Zhu, 0812,0964: DMnu from GC - M.Pohl, 0812,1174: electrons from DM - J.Hisano, M.Kawasaki, K.Kohri, K.Nakavama, 0812,0219: DMnu from GC - R.Allahverdi, B.Dutta, K.Richardson-McDaniel, Y.Santoso, 0812.2196; SuSy B-L DM - S.Hamaguchi, K.Shirai, T.T.Yanagida, 0812.2374; Hidden-Fermion DM decays - D.Hooper, A.Stebbins, K.Zurek, 0812.3202: Nearby DM clump - C.Delaunay, P.Fox, G.Perez, 0812.3331: DMnu from Earth - Park, Shu, 0901.0720: Split-UED DM - .Gogoladze, R.Khalid, O.Shafi, H.Yuksel, 0901.0923; cMSSM DM with additions - O.H.Cao, E.Ma, G.Shaughnessy, 0901.1334; Dark Matter: the leptonic connection - E.Nezri, M.Tytgat, G.Vertongen, 0901.2556: Inert Doublet DM - J.Mardon, Y.Nomura, D.Stolarski, J.Thaler, 0901.2926: Cascade annihilations (light non-abelian new bosons) - P.Meade, M.Papucci, T.Volansky, 0901.2925: DM sees the light - D.Phalen, A.Pierce, N.Weiner, 0901.3165: New Heavy Lepton - T.Banks, J.-F.Fortin, 0901.3578: Pyrma baryons -K.Bae, J.-H. Huh, J.Kim, B.Kyae, R.Viollier, 0812.3511: electrophilic axion from flipped-SU(5) with extra spontaneously broken symmetries and a two component DM with Z₂ parity - ...

Ibarra et al., 2007-2009 Nardi, Sannino, Strumia 0811.4153 A.Arvanitaki, S.Dimopoulos, S.Dubovsky, P.Graham, R.Harnik, S.Rajendran, 0812.2075

Decaying DM

DM need not be absolutely stable, just $\tau_{\rm DM} \gtrsim \tau_{\rm universe} \simeq 4.3 \ 10^{17} {\rm sec}$.

The current CR anomalies can be due to decay with: $\tau_{\rm decay} \approx 10^{26} {\rm sec}$

Motivations from theory?

- dim 6 suppressed operator in GUT Arvanitaki, Dimopoulos et al., 2008+09 $\tau_{\rm DM} \simeq 3 \cdot 10^{27} \sec \left(\frac{1 \text{ TeV}}{M_{\rm DM}}\right)^5 \left(\frac{M_{\rm GUT}}{2 \cdot 10^{16} \text{ GeV}}\right)^4$
- or in TechniColor

Nardi, Sannino, Strumia 2008

- gravitino in SuSy with broken R-parity...

Indirect Detection \bar{p} and e^+ from DM decay in halo

What sets the overall expected flux? ${\rm flux} \propto n \ \Gamma_{\rm decay}$

 $= \tau_{\rm decay} \approx 10^{26} {
m sec}$ $\Gamma_{\rm decay}^{-1}$

Which DM spectra can fit the data?

0.005

E.g. a fermionic $D_{50} \longrightarrow \mu^+ \mu^-$

E.g. a scalar $DM \rightarrow \mu^+ \mu$

 M_{\star} with $M_{\rm DM} = 3$

 $\overline{\text{TeV}}$:

Decaying D

But, again: gamma ray cons (although: no radio, neutrino cons

Model building

- Minimal extensions of the SM: heavy WIMPS (Minimal DM, Inert Doublet) Cirelli, Strumia et al. 2005-2009

Tytgat et al. 0901.2556

- More drastic extensions: New models with a rich Dark sector

M.Pospelov and A.Ritz, 0810.1502: Seclude mal DM - Y.Nomura and J.Thaler. 0810.5397: DM through the Axion Portal - R.Harnik and G.Kribs. 0810.5557: Dirac DM - D.F . 0810.5762: Hidden Sector - T.Hambye. 0811.0172: Hidden Vector - K.Ishiwata. S.Matsumoto, T.Moroi, 0811.0250: Superparticle DM - Y.Bai and Z.Han, 0811.0387; sUED DM - P.Fox, E.Poppitz, 0811.0399: Leptophilic DM - C.Chen, F.Takahashi, T.T.Yanagida, 0811.0477; Hidden-Gauge-Boson DM - E.Ponton, L.Randall, 0811.1029; Singlet DM - S.Baek, P.Ko, 0811.1646; U(1) Lmu-Ltau DM - I.Cholis, G.Dobler, D.Finkbeiner, L.Goodenough, N.Weiner, 0811.3641: 700+ GeV WIMP - K.Zurek, 0811.4429: Multicomponent DM - M.Ibe, H.Muravama, T.T.Yanagida, 0812.0072: Breit-Wigner enhancement of DM annihilation - E.Chun, J.-C.Park, 0812,0308; sub-GeV hidden U(1) in GMSB - M.Lattanzi, J.Silk, 0812,0360; Sommerfeld enhancement in avs DM - Zhang, Bi, Liu, Liu, Yin, Yuan, Zhu, 0812.0522: Discrimination with SR and IC - Liu, Yin, cold substructures - M.Pospelov, M.Trott, 0812.0432: super-WIMPs deca Zhu, 0812,0964: DMnu from GC - M.Pohl, 0812,1174: electrons from DM - J.Hisano, M.Kawasaki, K.Kohri, K.Nakavama, 0812,0219: DMnu from GC - R.Allahverdi, B.Dutta, K.Richardson-McDaniel, Y.Santoso, 0812.2196; SuSy B-L DM - S.Hamaguchi, K.Shirai, T.T.Yanagida, 0812.2374; Hidden-Fermion DM decays - D.Hooper, A.Stebbins, K.Zurek, 0812.3202: Nearby DM clump - C.Delaunay, P.Fox, G.Perez, 0812.3331: DMnu from Earth - Park, Shu, 0901.0720: Split-UED DM - .Gogoladze, R.Khalid, O.Shafi, H.Yuksel, 0901.0923; cMSSM DM with additions - O.H.Cao, E.Ma, G.Shaughnessy, 0901.1334; Dark Matter: the leptonic connection - E.Nezri, M.Tytgat, G.Vertongen, 0901.2556: Inert Doublet DM - J.Mardon, Y.Nomura, D.Stolarski, J.Thaler, 0901.2926: Cascade annihilations (light non-abelian new bosons) - P.Meade, M.Papucci, T.Volansky, 0901.2925: DM sees the light - D.Phalen, A.Pierce, N.Weiner, 0901.3165: New Heavy Lepton - T.Banks, J.-F.Fortin, 0901.3578: Pyrma baryons -K.Bae, J.-H. Huh, J.Kim, B.Kyae, R.Viollier, 0812.3511: electrophilic axion from flipped-SU(5) with extra spontaneously broken symmetries and a two component DM with Z₂ parity - ...

Ibarra et al., 2007-2009 Nardi, Sannino, Strumia 0811.4153 A.Arvanitaki, S.Dimopoulos, S.Dubovsky, P.Graham, R.Harnik, S.Rajendran, 0812.2075

Model building

- Minimal extensions of the SM: heavy WIMPS (Minimal DM, Inert Doublet)

 More drastic extensions: New models with a rich Dark sector
 TeV mass DM
 new forces (that Sommerfeld enhance)

- leptophilic because: - kinematics (light mediator) - DM carries lepton #

- Decaying DM

Ibarra et al., 2007-2009Nardi, Sannino, Strumia 0811.4153A.Arvanitaki, S.Dimopoulos, S.Dubovsky, P.Graham, R.Harnik, S.Rajendran, 0812.2075

The "Theory of DM"

Arkani-Hamed, Weiner, Finkbeiner et al. 0810.0713 0811.3641

Basic ingredients:

- χ Dark Matter particle, decoupled from SM, mass $M \sim 700+~{
 m GeV}$
- ϕ new gauge boson ("Dark photon"),
 - couples only to DM, with typical gauge strength, $m_{\phi} \sim \text{few GeV}$
 - mediates Sommerfeld enhancement of $\chi \bar{\chi}$ annihilation:

 $lpha M/m_V \gtrsim 1$ fulfilled

- decays only into e^+e^- or $\mu^+\mu^-$ for kinematical limit

The "Theory of DM"

Arkani-Hamed, Weiner, Finkbeiner et al. 0810.0713 0811.3641

Basic ingredients:

- χ Dark Matter particle, decoupled from SM, mass $~M\sim 700+~{
 m GeV}$
- ϕ new gauge boson ("Dark photon"),
 - couples only to DM, with typical gauge strength, $m_{\phi} \sim \text{few GeV}$
 - mediates Sommerfeld enhancement of $\chi\bar{\chi}$ annihilation:

 $lpha M/m_V\gtrsim 1$ fulfilled

- decays only into e^+e^- or $\mu^+\mu^-$ for kinematical limit

Extras:

- χ is a multiplet of states and ϕ is non-abelian gauge boson: splitting $\delta M \sim 200 \; {
 m KeV}$ (via loops of non-abelian bosons)
 - inelastic scattering explains DAMA
 - eXcited state decay $\chi\chi \rightarrow \chi\chi^*$ explains INTEGRAL $\hookrightarrow e^+e^-$

The "Theory of DM"

Phenomenology:

Variations

(selected)

pioneering: Secluded DM, U(1) Stückelberg extension of SM

Pospelov, Ritz et al 0711.4866 P.Nath et al 0810.5762

Ξ

Axion Portal: ϕ is pseudoscalar axion-like Nomura, Thaler 0810.5397

singlet-extended UED: χ is KK RNnu, ϕ is an extra bulk singlet Bai, Han 0811.0387

split UED: χ annihilates only to leptons because quarks are on another brane Park, Shu 0901.0720

 DM carrying lepton number: X charged under U(1)_{L_μ-L_τ}, φ gauge boson Cirelli, Kadastik, Raidal, Strumia 0809.2409 Fox, Poppitz 0811.0399 (m_φ ~ tens GeV)
 New Heavy Lepton: X annihilates into Ξ that carries lepton number and decays weakly (~ TeV) (~ 100s GeV)

 Phalen, Pierce, Weiner 0901.3165

★.....

Gamma rays

2. the '130 GeV line'

Basic picture: targets γ from DM annihilations in galactic center

Basic picture: targets γ from DM annihilations in dwarf galaxies

Basic picture: targets γ from DM annihilations in subhaloes

Basic picture: targets γ from DM annihilations in galaxy clusters Galactic Bulge orma Arm Scutum Arm Crux Arm Outer Arm Carina Arm Perseus Arm Local Arm Sagittarius Arm Sun $\checkmark W^-, Z, b, \tau^-, t, h \dots \rightsquigarrow e^{\mp}, \stackrel{(-)}{p}, \stackrel{(-)}{D} \dots$ and γ DM $\searrow W^+, Z, \overline{b}, \tau^+, \overline{t}, h \dots \rightsquigarrow e^{\pm}, \stackrel{(-)}{p}, \stackrel{(-)}{D} \dots$ and γ DM

primary channels

So what are the particle physics parameters?

1. Dark Matter mass

2. annihilation cross section $\sigma_{\rm ann}$

Prompt emission: sharp features

Prompt emission: sharp features

Internal Bremsstrahlung

Bergström 1989

Prompt emission: sharp features

DM

Internal Bremsstrahlung

Bergström 1989

Prompt emission: sharp features

Internal Bremsstrahlung

MDM

Bergström 1989

So what are the particle physics parameters?

1. Dark Matter mass.

The rest depends on the model

Prompt emission: sharp features

Ibarra, Lopez Gehler, Pato 1205.0007 Fan, Reece 1209.1097

particle physics parameters?

2. The mediator mass

Theorist's reaction

2. the '130 GeV line' frenzy

It's 'easy' to make a line: any 2-body final state with at least one γ . But:

Challenges

DM is <u>neutral</u>: need 'something' to couple to γ

DM is <u>neutral</u>: need 'something' to couple to γ

'Higgs in space!' 0912.0004 Kyae, Park 1205.4151 Cline 1205.2688

 $X \in \operatorname{SM}_{\operatorname{MSSM}_{\operatorname{dark sector...}}}$

Dudas et al., 1205.1520

Lee & Park² 1205.4675

Heo, Kim 1207.1341

...

DM is <u>neutral</u>: need 'something' to couple to γ

= 10-

DM

DM

The 'something' implies usually a suppression,

DM is <u>neutral</u>: need 'something' to couple to γ

= 10

DM

DM

The 'something' implies usually a suppression, but one needs a large $\gamma\gamma$ cross section (0(10²⁷ cm³/s))

DM is <u>neutral</u>: need 'something' to couple to γ

The 'something' implies usually a suppression, but one needs a large $\gamma\gamma$ cross section (0(10²⁷ cm³/s))

so the corresponding unsuppressed processes are too large:

- may overshoot other observations
- too large annihilation in the EU

DM

DN

Buchmuller, Garny1206.7056 Cohen et al. 1207.0800 Cholis, Tavakoli, Ullio 1207.1468 Huang et al. 1208.0267

DM is <u>neutral</u>: need 'something' to couple to γ

= 10

The 'something' implies usually a suppression, but one needs a large $\gamma\gamma$ cross section (0(10²⁷ cm³/s))

so the corresponding unsuppressed processes are too large:

may overshoot other observations
too large annihilation in the EU

DM

DM

DM is <u>neutral</u>: need 'something' to couple to γ

= 10

The 'something' implies usually a suppression, but one needs a large $\gamma\gamma$ cross section (o(10²⁷ cm³/s))

so the corresponding unsuppressed processes are **too** large:

may overshoot other observations
too large annihilation in the EU

DM

DM

But solutions exist

not exhaustive! Ex. 1: 'resonance, loop and forbidden channel'

(a) DM charged under U'(1) (b) Z' is t_{R} -philic (c) $m_{DM} \lesssim m_{top}$

line(s)

with large rate if on resonance (a) (masses & couplings)

Jackson. Servant. Shaughnessy, Tait, Taoso, 'Higgs in space'. 0912.0004

today: kinematically forbidden (c) little in other channels (b) small continuum

Early Universe: relic abundance (only via Z-Z' mixing)

However: - anomalies, need to UV complete (b)

not exhaustives Ex. 2: 'resonance, tri-boson vertices, Chern-Simons' (a) DM charged under U'(1) (b) anomaly cancellation -> tri-boson CS terms $\mathcal{L}_{\rm CS} = \alpha \, \varepsilon^{\mu\nu\rho\sigma} \, Z'_{\mu} Z_{\nu} F^{Y}_{\rho\sigma}$ Dudas. Mambrini. Pokorski, Romagnoni

(c) $m_{Z'} < m_{DM}$

line (b)

2009-2012, 1205.1520

relic abundance

a different diagram wrt to line, open thanks to (c), works for large gauge coupling and small (loop?) CS coeff

Continuum? Under control

not exhaustive! Ex. 3: 'pseudo-scalar mediation, p- and s-waves' (a) DM charged under $U(1)_{PQ}$ (b) anomalies -> tri-boson terms

line (b)

with large rate if on resonance (a)

Continuum? Assume couplings to W and Z are suppressed

Exchange of s/h is p-wave, i.e. \lor dependent. Suppressed today, large in EU.

relic abundance

Lee, Park², 1205.4675

not exhaustive Ex. 4: 'magnetic moments and coannihilations' Tulin. Yu. Zurek 1208.0009 (a) DM has a magnetic moment Cline, Moore, Frey 1208.2685 $\mu \bar{\chi}_1 \sigma_{\mu\nu} \chi_2 F^{\mu\nu}$ (b) DM sits in a multiplet with ~10 GeV splitting $\mathcal{N}, \gamma, Z \Rightarrow$ line (a) with large rate χ_2 if μ is large Continuum? Under control (it's same order as $\gamma\gamma$) χ_1

relic abundance

is set by coannihilations, they would be too effective for large μ , but the splitting (b) suppresses.

Continuum? Ultra suppressed by the splitting (b)

relic abundance (α)

is produced via the asymmetry is decoupled from the annihilation

relic abundance (α)

is produced via the asymmetry is decoupled from the annihilation

Annihilations resume (b)

relic abundance (α)

is produced via the asymmetry is decoupled from the annihilation

Annihilations resume (b)

relic abundance (α)

is produced via the asymmetry is decoupled from the annihilation

Annihilations resume (b)

relic abundance (α)

is produced via the asymmetry is decoupled from the annihilation

Annihilations resume (b) (and the cross section needs to be large)

relic abundance (α)

is produced via the asymmetry is decoupled from the annihilation

Annihilations resume (b) line (and the cross section needs to be large)

relic abundance (α)

is produced via the asymmetry is decoupled from the annihilation

Annihilations resume (b) line (and the cross section needs to be large)

Continuum? Needs to be suppressed in some way today.

DM is <u>neutral</u>: need 'something' to couple to γ

= 10

The 'something' implies usually a suppression, but one needs a large $\gamma\gamma$ cross section (o(10²⁷ cm³/s))

so the corresponding unsuppressed processes are **too** large:

may overshoot other observations
too large annihilation in the EU

DM

DM

But solutions exist

Model building

may overshoot other observations
too large annihilation in the EU

But solutions exist

Model building

may overshoot other observations
too large annihilation in the EU

But solutions exist

In summary:

- kinematically forbidden channel
- different diagrams
- o s-wave vs p-wave
- coannihilations and splitting
- DM production is decoupled from annihilations

Ø ...

Direct Detection

3. the 'DAMA/CoGeNT/CRESST anomaly'

recoil energy

$$=\frac{\mu_{\chi}^2 v^2}{m_N} (1 - \cos \theta)$$

$$\mu_{\chi} = \frac{m_{\chi} \, m_N}{m_{\chi} + m_N} \to \begin{cases} m_{\chi} \text{ for small } m_N \\ m_N \text{ for large } m \end{cases}$$

recoil energy spectrum

$$\frac{dR}{dE_R} = \frac{1}{2} \frac{\rho_{\odot}}{m_{\chi}} \frac{\sigma}{\mu^2} \int_{v_{\min}(E_R)}^{v_{esc}} \frac{1}{v} f(\vec{v}) \, \mathrm{d}\vec{v}$$

 E_R

with $f(\vec{v}) \propto e^{-v^2/V_c^2}$ + motion of Earth in (static?)halo

 $\sigma pprox \sigma_n^{
m SI} A^4 ~~ imes$ nuclear form factors

number of events

$$N = \mathcal{E} \, \mathcal{T} \int_{E_{\text{thres}}}^{E_{\text{max}}} \frac{dR}{dE_R} \, dE_R$$

recoil energy

$$=\frac{\mu_{\chi}^2 v^2}{m_N} (1 - \cos \theta)$$

 $\mu_{\chi} = \frac{m_{\chi} \, m_N}{m_{\chi} + m_N} \to \begin{cases} m_{\chi} \text{ for small } m_{\chi} \\ m_N \text{ for large } m_{\chi} \end{cases}$

recoil energy spectrum

$$\frac{dR}{dE_R} = \frac{1}{2} \frac{\rho_{\odot}}{m_{\chi}} \frac{\sigma}{\mu^2} \int_{v_{\min}(E_R)}^{v_{esc}} \frac{1}{v} f(\vec{v}) \, \mathrm{d}\vec{v}$$

with
$$f(ec{v}) \propto e^{-v^2/V_c^2}$$
 + motion of Earth in (static?)halo

 E_R

 $\sigma pprox \sigma_n^{
m SI} A^4 ~~ imes$ nuclear form factors

number of events

$$N = \mathcal{E} \mathcal{T} \int_{E_{\text{thres}}}^{E_{\text{max}}} \frac{dR}{dE_R} dE_R$$

Direct Detection: basics

recoil energy

$$=\frac{\mu_{\chi}^2 v^2}{m_N} (1 - \cos \theta)$$

 $\mu_{\chi} = \frac{m_{\chi} \, m_N}{m_{\chi} + m_N} \to \begin{cases} m_{\chi} \text{ for small } m_{\chi} \\ m_N \text{ for large } m_{\chi} \end{cases}$

recoil energy spectrum

$$\frac{dR}{dE_R} = \frac{1}{2} \frac{\rho_{\odot}}{m_{\chi}} \frac{\sigma}{\mu^2} \int_{v_{\min}(E_R)}^{v_{esc}} \frac{1}{v} f(\vec{v}) \, \mathrm{d}\vec{v}$$

with
$$f(\vec{v}) \propto e^{-v^2/V_c^2}$$
 + motion of Earth in (static?)halo

 \overline{E}_R

 $\sigma \approx \sigma_n^{\rm SI} A^4 \quad \times \text{nuclear form factors}$

number of events

$$N = \mathcal{E} \, \mathcal{T} \, \int_{E_{\text{thres}}}^{E_{\text{max}}} \frac{dR}{dE_R} \, dE_R$$

P.Salati, proceedings of Cargèse 2007

Direct Detection: basics

Background r

Ionization Yield

[credit: B.Sadoulet]

CDMS coll.

measure two quantities to discriminate Sign & Bkgd, on event-by-event basis

Direct Detection: hints DAMA/Libra NaI(TI)

Annual modulation seen (8σ) :

DAMA Coll., 0804.2741, 2008

Direct Detection: hints DAMA/Libra NaI(TI)

Annual modulation seen (8σ) :

DAMA Coll., 0804.2741, 2008

Direct Detection: hints DAMA/Libra

Annual modulation seen (8σ) :

DAMA Coll., 0804.2741, 2008

An instrumental effect?

Summary of the results obtained in the additional investigations of possible systematics or side reactions (DAMA/LIBRA - NIMA592(2008)297, EPJC56(2008)333)

Source	Main comment	Cautious upper limit (90%C.L.)
RADON	Sealed Cu box in HP Nitrogen atmosphere, 3-level of sealing, etc.	<2.5×10 ⁻⁶ cpd/kg/keV
TEMPERATURE	Installation is air conditioned+ detectors in Cu housings directly in contact with multi-ton shield→ huge heat capacity + T continuously recorded	<10 ⁻⁴ cpd/kg/keV
NOISE	Effective full noise rejection near threshold	<10 ⁻⁴ cpd/kg/keV
ENERGY SCALE	Routine + instrinsic calibrations	<1-2 ×10 ⁻⁴ cpd/kg/keV
EFFICIENCIES	Regularly measured by dedicated calibrations <10 ⁻⁴ cpd/kg/keV	
BACKGROUND	No modulation above 6 keV; no modulation in the (2-6) keV <i>multiple-hits</i> events; this limit includes all possible sources of background	<10 ⁻⁴ cpd/kg/keV

SIDE REACTIONS Muon flux variation measured by MACRO <3×10⁻⁵ cpd/kg/keV

DAMA/Libra

tum Anna A A

and a

Sagittarius

Event 1:

Tower 1, ZIP 5 (T1Z5)

Tower 3, ZIP 4 (T3Z4)

50

Recoil Energy (keV)

CDMS coll., Science 327 (2010), 0912.3592

60

Sun. Aug. 5, 2007

2:41 pm CDT

40

Sat. Oct. 27, 2007

8:48pm CDT

Event 2:

30

1.5

Ionization Yield

0.5

10

20

All WIMP search data passing the timing cut

Annual modulation seen (8σ) :

cited 500 times

80

90

100

70

DAMA Coll., 0804.2741, 2008

DAMA/Libra

Annual modulation seen (8σ) :

Edelweiss Ge 3 events seen 'background starts to appear'

Edelweiss coll, TeVPA 2010 and 1011.2319 cited 500/10 = 50 times

DAMA Coll., 0804.2741, 2008

DAMA/Libra

Annual modulation seen (8σ) :

DAMA Coll., 0804.2741, 2008

EdelweissGe5 events seen,with 3 exp'd background

Edelweiss coll, 1103.4070

DAMA/Libra

Annual modulation seen (8σ) :

DAMA Coll., 0804.2741, 2008

CoGeNT Ge 'irreducible excess of bulk events below 3 KeVee'

CoGeNT Coll., 1002.4703

We lack a satisfactorily explanation [...]. It is tempting to consider a cosmological origin [...]. Prudence and past experience prompt us to continue work to exhaust less exotic possibilities.

DAMA/Libra

Annual modulation seen (8σ) :

DAMA Coll., 0804.2741, 2008

CoGeNT Ge 'irreducible excess of bulk events below 3 KeVee'

CoGeNT coll., 1106.0650

DAMA/Libra

Annual modulation seen (8σ) :

DAMA Coll., 0804.2741, 2008

CRESST-IICaWO467 events seen on Oxygen,twice the exp'd background

CRESST-II Coll., 1109.0702

Theorist's reaction

3. the 'light DM' fit-olympics

Direct Detection: hints Plotolympics 2011: fits performed by different groups

(Kopp+)Schwetz+Zupan, 1106.6241 & 1110.2721

Hooper+Kelso, 1106.1066

Space available Call 911-drk-mttr now!

Direct Detection: hints Plotolympics 2011: fits performed by different groups Discipline: Standard Fit: SI, standard halo

Direct Detection: hints Plotolympics 2011: fits performed by different groups Discipline: Astro Fit: modifying velocity distrib, local density, profile...

Direct Detection: hints Plotolympics 2011: fits performed by different groups Discipline: Isospin Fit: assuming different coupling to **p** and **n**...

- those who dared to try find some **more** improvement

1106.1

Hooper+Kelso,

1105.3734

Direct Detection: hints Plotolympics 2011: fits performed by different groups Discipline: CRESST-II overtime: add 1109.0702

1105.3734

Direct Detection: constraints

Xenon 100 XENON 100 Coll., 1207.5988

225 live days 2 events seen (1.0 exp'd bkgd)

scintillation efficiency in LXe

ferocious criticism in Collar & McKinsey, 1005.0838v1, v2, v3

Direct Detection: constraints

Xenon 100 XENON 100 Coll., 1207.5988

225 live days 2 events seen (1.0 exp'd bkgd)

scintillation efficiency in LXe

ferocious criticism in Collar & McKinsey, 1005.0838v1, v2, v3

XENON 100 Coll., 1005.2615

Direct Detection: 'theory'

SM weak scale SI interactions

tree level, vector

tree level, scalar

$$\sigma_{\rm SI} \sim \frac{\alpha^2 \ m_N^4}{M_h^6}$$

one loop $\sigma_{\rm SI}$

$$\sim \frac{\alpha^4 \ m_N^4}{M_W^6}$$

Direct Detection: 'theory'

SM weak scale SI interactions

N

N

~XENON100 2012

at Collaboration delweiss A

Direct Detection: 'theory'

SM weak scale SI interactions

tree level, vector Still viable under which conditions?

tree level, scalar

DM DM[±] DM W W N N

Direct Detection: 'theory'

SM weak scale SI interactions

Still viable under which conditions?

- real particle (Majorana fermion, real scalar)

tree level, scalar

Direct Detection: 'theory' SM weak scale SI interactions Still viable under DM DM tree level. which conditions? vector N N- real particle (Majorana fermion, real scalar) -hypercharge Y = 0DM DM tree level.

h

N

N

SCal al

Direct Detection: 'theory'

SM weak scale SI interactions

Still viable under which conditions?

- real particle (Majorana fermion, real scalar)
- -hypercharge Y = 0
- SD interactions only
- inelastic scattering

vector

The field of Dark Matter searches is thriving (mainly data driven).

The field of Dark Matter searches is thriving (mainly data driven).

'Anomalies' pop up in many places (but they also often fade away)

- PAMELA/Fermi/HESS e⁺e⁻ excesses
 Fermi 135 GeV line
- DAMA anomaly

The field of Dark Matter searches is thriving (mainly data driven).

'Anomalies' pop up in many places (but they also often fade away)

- PAMELA/Fermi/HESS e⁺e⁻ excesses
 Fermi 135 GeV line
- DAMA anomaly

For the moment, confusion is maximal,

The field of Dark Matter searches is thriving (mainly data driven).

'Anomalies' pop up in many places (but they also often fade away)

- PAMELA/Fermi/HESS e⁺e⁻ excesses
 Fermi 135 GeV line
- DAMA anomaly

For the moment, confusion is maximal, but maybe it's prelude to discovery

The field of Dark Matter searches is thriving (mainly data driven).

'Anomalies' pop up in many places (but they also often fade away)

- PAMELA/Fermi/HESS e⁺e⁻ excesses
 Fermi 135 GeV line
- DAMA anomaly

For the moment, confusion is maximal, but maybe it's prelude to discovery

