Investigation of the Dynamical Dipole Mode in the ^{40,48}Ca+^{152,144}Sm fusionevaporation and fission reactions at 11 MeV/nucleon

<u>C. Parascandolo¹</u>, D. Pierroutsakou², C. Agodi³, R. Alba³, V. Baran^{3,4}, A. Boiano², M. Colonna³, R. Coniglione³, E. De Filippo⁵, A. Del Zoppo³, M. Di Toro^{6,3}, U. Emanuele⁷, F. Farinon⁸, A. Guglielmetti⁹, M. La Commara^{10,2}, C. Maiolino³, B. Martin^{10,2}, C. Mazzocchi⁹, M. Mazzocco¹, C. Rizzo^{6,3}, M. Romoli², M. Sandoli^{10,2}, D. Santonocito³, C. Signorini¹, R. Silvestri^{10,2}, F. Soramel¹, E. Strano¹, D. Torresi¹, A. Trifirò⁷ and M. Trimarchi⁷

¹ Dipartimento di Fisica e Astronomia, Università di Padova and INFN - Padova, Italy ² INFN - Napoli, Napoli, Italy ³ INFN - Laboratori Nazionali del Sud, Catania, Italy ⁴ University of Bucharest, Bucharest and NIPNE-HH, Magurele, Romania ⁵ INFN - Catania, Catania, Italy ⁶ Dipartimento di Fisica e Astronomia, Università di Catania, Catania, Italy ⁷ INFN Gruppo Collegato di Messina and Università di Messina , Messina, Italy ⁸ GSI, Darmstadt, Germany ⁹ Dipartimento di Fisica, Università di Milano and INFN - Milano, Milano, Italy ¹⁰ Dipartimento di Fisica, Università di Napoli, Italy

Contact email: concetta.parascandolo@pd.infn.it

The Dynamical Dipole mode (DD) is a large amplitude collective oscillation of protons against neutrons of the di-nuclear system, formed in charge asymmetric heavy-ion collisions. It decays emitting prompt dipole γ -rays [1-3] and gives information about the dynamics of dissipative reactions. From a theoretical point of view, the DD γ yield should increase as a function of the entrance channel charge asymmetry, becoming maximum for reactions employing exotic nuclei where large N/Z ratios can be reached. A large yield could allow to probe the density dependence of the symmetry energy in the Equation of State at sub-saturation densities, where the DD is active [4]. Furthermore, the DD radiation could be of interest for the synthesis of super-heavy elements in hot fusion reactions as it cools down the formed nucleus on the fusion path through emission of prompt γ -rays. However, by comparing the few existing data in the mass region A~ 130, taken at different beam energies and for different entrance channel N/Z asymmetries, with theoretical calculations we conclude that many aspects should still be clarified.

By performing time-dependent Hartree-Fock calculations it was predicted in [5] that the DD γ yield decreases in collisions involving heavy mass ions since reactions with small nuclei are less damped than those involving heavier ones. To verify such a prediction we investigated the DD in fusion-evaporation and fission reactions in a mass region never studied before. The ¹⁹²Pb compound nucleus was formed in the ⁴⁰Ca + 152 Sm and 48 Ca + 144 Sm reactions at $E_{lab} = 440$ MeV and 485 MeV, respectively, by using the same method described in our previous works [2]. The experiment was performed at Laboratori Nazionali del Sud (LNS, Italy), by using the $^{40-48}$ Ca pulsed beams provided by the Superconducting Cyclotron. The γ -rays and the light charged particles were detected by using the MEDEA apparatus [6], made of 180 BaF₂ scintillators. The heavy reaction fragments were detected by position sensitive Parallel Plate Avalanche Counters placed symmetrically around the beam direction in order to investigate the DD in both fusion-evaporation and fission events. Preliminary results of the analysis were presented in [7]. γ -ray spectra and angular distributions extracted for central collisions evidence that the DD survives in reactions involving heavier nuclei than those studied before, with a yield of $(8\pm1)*10^{-5}$ sr⁻¹ for evaporation and $(10\pm3)*10^{-5}$ sr⁻¹ for fission. These results will be compared with those found at different mass regions for fusion-evaporation events and with theoretical calculations performed within a BNV transport model, based on a collective bremsstrahlung analysis of the entrance channel reaction dynamics. Ideas about future experimentation on the DD study by employing also radioactive beams will be discussed.

- [1] S. Flibotte et al., PRC77(1996)1448;
- [2] D. Pierroutsakou et al., PRC71(2005)054605, PRC80(2009)024612, B. Martin et al., PLB664 (2008)47;
- [3] A. Corsi et al., PLB679(2008)197;
- [4] V. Baran et al., PRC79(2009)021603(R);
- [5] C. Simenel, P. Chomaz, G. de France, PRL86(2001)2971;
- [6] E. Migneco et al., NIMA**314**(1992)31.
- [7] C. Parascandolo et al., Act. Phys. Pol. B42 (2011)629, D. Pierroutsakou et al., AIP Conf. Proc.1423,59-64 (2012).