International Nuclear Physics Conference INPC2013: 2-7 June 2013, Firenze, Italy

The ⁶Li(²²Ne, ²⁶Mg)d α -transfer experiment for the study of low energy resonances in ²²Ne (α , γ) ²⁶Mg

S. Ota¹, H. Makii¹, T. Ishii¹, K. Nishio¹, S. Mitsuoka¹, I. Nishinaka¹, S. Chiba²

¹ Advanced Science Research Center, Japan Atomic Energy Agency, Tokai, Japan ² Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology, Tokyo, Japan

Contact email: ota.shuya@jaea.go.jp

While the reaction 22 Ne(α ,n) 25 Mg in stellar He burning is considered the dominant neutron source for the s-process in massive stars, the competing ${}^{22}Ne(\alpha,\gamma){}^{26}Mg$ reaction may be of considerable strength and significantly suppress the neutron production [1]. The resonance parameters such as levels and strengths in ^{26}Mg produced by α + ^{22}Ne at some low energy resonances within the Gamow window ($E_{\alpha} = 400 \sim 1000$ keV) should be experimentally determined with better accuracy to improve our understanding of those reaction rates [2]. In this work, we studied the feasibility of the ${}^{6}Li({}^{22}Ne, {}^{26}Mg)d\alpha$ -transfer reaction to better investigate those resonance parameters. The ${}^{6}Li({}^{22}Ne, {}^{26}Mg)d\alpha$ -transfer experiment was performed at the JAEA (Japan Atomic Energy Agency) -Tokai tandem accelerator. Two sets of four Si AE-E detectors were used for detection of Mg and deuteron, respectively. Details of detection systems for Mg and deuterons are described in [3]. The energies of deuterons were measured to determine the excitation energy of ²⁶Mg and coincidence detection of ²⁶Mg and deuteron were attempted to remove the deuteron background from unwanted reactions. We succeeded in detecting the expected Mg-d coincidence events and concluded that the ${}^{6}Li({}^{22}Ne, {}^{26}Mg)d\alpha$ transfer experiment can be a good tool to search for resonance levels of $^{22}Ne + \alpha$ reactions in the Gamow window at stellar He burning in massive stars.

[1] F. Kappeler et al., Rev. Mod. Phys, 83 (2011) 157.

[2] A. I. Karakas et al., Astrophys. J. 643 (2006) 471.

[3] S. Ota et al., Proceedings of Science (proceedings of NIC12) (in publish).