Measurements of interaction cross sections for ²²⁻³⁵Na isotopes

<u>S. Suzuki</u>, M. Takechi¹, T. Ohtsubo, D. Nishimura², M. Fukuda³, T. Kuboki⁴, M. Nagashima, T. Suzuki⁴, T. Yamaguchi⁴, A. Ozawa⁵, H. Ooishi⁵, T. Moriguchi⁵, T. Sumikama², H. Geissel¹, N. Aoi⁶, Rui-Jiu Chen⁷, De-Qing Fang⁸, N. Fukuda², S. Fukuoka⁵, H. Furuki⁴, N. Inabe⁷, Y. Ishibashi⁵, T. Ito, T. Izumikawa⁹, D. Kameda⁷, T. Kubo⁷, M. Lantz⁷, C.S. Lee⁴, Yu-Gang Ma⁸, M. Mihara³, S. Momota¹⁰, D. Nagae⁵, R. Nishikiori⁵, T. Niwa⁵, T. Ohnishi⁷, K. Okumura⁵, T. Ogura, H. Sakurai⁷, K. Sato⁴, Y. Shimbara, H. Suzuki⁷, H. Takeda⁷, S. Takeuchi⁷, K. Tanaka⁷, H. Uenishi³, M. Winkler¹ and Y. Yanagisawa⁷

Department of Physics, Niigata University, Niigata 950-2102, Japan ¹Gesellschaft für Schwerionenforschung GSI, 64291 Darmstadt, Germany ²Department of Physics, Tokyo University of Science, Tokyo 278-8510, Japan ³Department of Physics, Osaka University, Osaka 560-0043, Japan ⁴Department of Physics, Saitama University, Saitama 338-8570, Japan ⁵Institute of Physics, University of Tsukuba, Ibaragi 305-8571, Japan ⁶Research Center for Nuclear Physics RCNP, Osaka 567-0047, Japan ⁷RIKEN, Nishina Center, Wako, Saitama 351-0198, Japan ⁸Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China ⁹RI Center, Niigata University, Niigata 950-2102, Japan

¹⁰Faculty of Engineering, Kochi University of Technology, Kochi 782-8502, Japan

Contact email: ssuzuki@np.gs.niigata-u.ac.jp

Interaction cross sections (σ_I) for Na isotopes from stability line to the vicinity of the neutron drip line have been measured at around 240*A* MeV. The σ_I for ³³⁻³⁵Na have been measured for the first time. The experiment was carried out by using BigRIPS at RIBF.

The halo and skin structures at the nuclear surface have attracted much interest. These exotic structures were discovered by measurements of interaction cross sections [1,2]. In this work, we measured σ_{I} for Na isotopes including the nuclei that are located in or near the so-called "island of inversion". Figure 1 shows the mass number dependence of $\sigma_{\rm I}$ for ²²⁻³⁵Na isotopes on C targets. Starting at mass number 28, the present data deviate from systematics for stable nuclei with increasing mass number. The tendency of $\sigma_{\rm I}$ for ²²⁻³¹Na isotopes corresponds with that of nuclear deformation parameter β_2 . From the present data, the root mean square nuclear matter radii $\langle r_m^2 \rangle^{1/2}$ were determined by using Glauber-type calculation. These $\langle r_m^2 \rangle^{1/2}$ are almost in agreement with theoretical calculation by relativistic mean field model (RMF) [3]. A monotonic growth of the neutron skin thickness has been observed as the neutron number increases in Na isotopes. This results are consistent with results in ref. 2. Moreover, the shell structures of neutron excess Na isotopes will be discussed.

- [2] T. Suzuki et al., Phys Rev. Lett. 75, 3241 (1995).
- [3] L. S. Geng et al., Nuclear Phys. A 730, 80 (2004).

Figure 1: The observed mass number dependence of interaction cross sections for Na isotopes on C targets.

^[1] I. Tanihata et al., Phys. Rev. Lett. 55, 2676 (1985).