Study of the properties of the superheavy nucleus Z = 117 produced in the ²⁴⁹Bk + ⁴⁸Ca reaction

Yu.Ts. Oganessian,¹ F.Sh. Abdullin,¹ C. Alexander,² J. Binder,² R.A. Boll,² S.N. Dmitriev,¹
J. Ezold,² K. Felker,² J.M. Gostic,³ R.K. Grzywacz,^{2,4} J.H. Hamilton,⁵ R.A. Henderson,³ M.G. Itkis,¹
K. Miernik,² D. Miller,⁴ K.J. Moody,³ A.N. Polyakov,¹ A.V. Ramayya,⁵ J.B. Roberto,²
M.A. Ryabinin,⁶ K.P. Rykaczewski,² R.N. Sagaidak,¹ D.A. Shaughnessy,³ I.V. Shirokovsky,¹
M.V. Shumeiko,¹ M.A. Stoyer,³ N.J. Stoyer,³ V.G. Subbotin,¹ A.M. Sukhov,¹ Yu.S. Tsyganov,¹
V.K. Utyonkov,¹ A.A. Voinov,¹ and G.K. Vostokin¹

¹ Joint Institute for Nuclear Research, RU-141980 Dubna, Russian Federation ² Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA

³ Lawrence Livermore National Laboratory, Livermore, California 94551, USA

⁴ Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37996, USA

⁵ Department of Physics and Astronomy, Vanderbilt University, Nashville, Tennessee 37235, USA

⁵ Research Institute of Atomic Reactors, RU-433510 Dimitrovgrad, Russian Federation

Contact email: voinov_2000@mail.ru.

The reaction of ²⁴⁹Bk with ⁴⁸Ca have been reinvestigated to provide new evidence for the discovery of elements 113, 115, and 117 on a larger number of events. The experiments were performed during April–October, 2012, at the Dubna Gas-Filled Recoil Separator at five projectile energies and with a total beam dose of ⁴⁸Ca of about 4.6×10^{19} . Two isotopes ^{293,294}117 were synthesized in the ²⁴⁹Bk+⁴⁸Ca reaction, providing excitation functions and α -decay spectra of the produced isotopes that establishes these nuclei to be the products of the 4*n*- and 3*n*-evaporation channels, respectively ([1] and this work). Decay properties of ^{293,294}117 and of all the daughter products agree with the data of the experiment in which these nuclei were synthesized for the first time in 2010 [2]. The new ²⁸⁹115 events, populated by α decay of ²⁹³117, demonstrate the same decay properties as those observed for ²⁸⁹115 produced in the ²⁴⁹Cf – a result of the in-growth of ²⁴⁹Cf in the ²⁴⁹Bk target. The obtained results are compared with the data from previous experiments aimed at the synthesis of elements 115 [3], 117 [1,2], and 118 [4].

[1] Yu.Ts. Oganessian et al., Phys. Rev. Lett. 109, 162501 (2012).

- [2] Yu.Ts. Oganessian et al., Phys. Rev. Lett. 104, 142502 (2010); Phys. Rev. C 83, 054315 (2011).
- [3] Yu.Ts. Oganessian et al., Phys. Rev. Lett. 108, 022502 (2012); Phys. Rev. C 87, 014302 (2013).
- [4] Yu.Ts. Oganessian et al., Phys. Rev. C 74, 044602 (2006).