Impact of nuclear structure on production and identification of superheavy nuclei

N.V. Antonenko¹

¹ Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, 141980 Dubna, Russia

Contact email: antonenk@theor.jinr.ru

The calculations performed with the modified two-center shell model reveal quite strong shell effects at Z = 120 - 126 and N = 184 [1]. So, our microscopic-macroscopic treatment qualitatively leads to the results close to those in the self-consistent mean-field treatments. If our prediction of the structure of heaviest nuclei is correct, than one can expect the production of evaporation residues Z = 120 in the reactions ${}^{50}\text{Ti}+{}^{249}\text{Cf}$ and ${}^{54}\text{Cr}+{}^{248}\text{Cm}$ with the cross sections 23 and 10 fb, respectively. The Z = 120nuclei with N = 175 - 179 are expected to have Q_{α} about 12.1–11.2 MeV and lifetimes 1.7 ms– 0.16 s in accordance with our predictions. These Q_{α} are in fair agreement with predictions of Liran et al. and about 2 MeV smaller than in other microscopic-macroscopic approaches. The experimental measurement of Q_{α} for at least one isotope of Z = 120 nucleus would help us to set proper shell model for the superheavies with Z > 118. Note that the definition of maxima of the excitation functions provides a good test for the predictions of the models as well.

Based on the calculated one-quasiproton spectra and energies for a decays, one can explain [2] why the α -decay chain of ²⁹¹117 or ²⁸⁷115 is terminated by spontaneous fission of ²⁶⁷Db. It is shown that, in the α -decay chain of ²⁹³117, the α decay of ²⁸¹Rg is hindered by the structure effects and because of this, the ²⁸¹Rg nucleus undergoes spontaneous fission instead of a decay. In addition, the number of isomeric states in the heaviest odd-Z nuclei is predicted. For the ²⁸²Rg nucleus, we expect $T_{\alpha} \approx 25$ s and $T_{sf} \approx 110$ s, i.e., about ten times larger than for neighboring even-odd nuclei ²⁸³Cn and ²⁸¹Ds. Thus, ²⁸²Rg nucleus α decay.

Although the values of T_{α} found in the α -decay chains of ²⁸⁷Fl and ²⁹³Lv are quite large, one cannot completely exclude the α decays from the one-quasiparticle isomeric states in ²⁸⁷Fl, ²⁸³Cn, and ²⁸¹Ds [3]. For example, it is shown that the α decay of the ²⁸¹Ds nucleus occurs only from the ground state which can be populated with small probability in the α -decay chains of the ²⁸⁹Fl element. The minimum of Q_{α} in ²⁸⁶Fl indicates the neutron shell at N = 172. In other α -decay chains considered there is no minima of Q_{α} at Z = 114, which probably indicates the proton shell closure at $Z \ge 120$ as predicted with the self-consistent microscopic and microscopic-macroscopic [1] calculations.

[1] A.N. Kuzmina, G.G. Adamian, N.V. Antonenko, and W. Scheid, Phys. Rev. C 85, 014319 (2012).

[2] A.N. Kuzmina, G.G. Adamian, and N.V. Antonenko, Phys. Rev. C 85, 017302 (2012).

^[3] A.N. Kuzmina, G.G. Adamian, and N.V. Antonenko, Phys. Rev. C 85, 027308 (2012).