Results from single-neutron adding reactions on light neutron-rich nuclei with HELIOS

Calem Hoffman
Argonne National Laboratory

INPC 2013
Florence, Italy
D4 - Nuclear Reactions

$$
\text { HELI } \odot
$$

Direct nucleon transfer reactions

- Reduced cross sections give single-particle nature of final states
- Angular distributions
- Orbital momentum of final state, I
- Total angular momentum,J
- Single-particle distributions
- Spectroscopic factors, $C^{2} S$
- Single-particle energies
- Occupation and Vacancies
- Absolute cross sections
- Consistent theoretical approach
- Configuration mixing
- Pairing correlations

J. P. Schiffer et al., PRL 92, 162501 (2004)
- $(p, t)(t, p)\left({ }^{3} \mathrm{He}, \mathrm{p}\right)$
- Astrophysics
- S-factors, surrogate reactions, ANCs
- Inverse kinematics needed for short lived nuclei

Difficulties in inverse kinematics

~100's keV resolution

Kinematics in a magnetic field

28Si(d,p) @ 6 MeV/u w/ 2-T field

$$
\frac{\mathrm{m}}{\mathrm{q}}=\frac{\mathrm{e} B}{2 \pi} \times \mathrm{T}_{\text {flight }}
$$

Flight time:	$\mathrm{T}_{\text {flight }}=\mathrm{T}_{\text {cyc }}$
Position:	z
Energy:	$\mathrm{E}_{\text {lab }}$

Derived quantities

Part. ID
Energy:
Angle:

m / q E_{cm} θ_{cm}

$\mathrm{E}_{\mathrm{cm}}=\mathrm{E}_{\mathrm{lab}}+\frac{1}{2} \mathrm{mV}_{\mathrm{cm}}^{2}-\frac{\mathrm{V}_{\mathrm{cm}} \mathrm{qe} B}{2 \pi} \underline{\mathrm{Z}}$
$\theta_{\mathrm{cm}}=\arccos \left(\frac{1}{2 \pi} \frac{\mathrm{qe} B \mathrm{z}-2 \pi \mathrm{mV}_{\mathrm{cm}}}{\sqrt{2 \mathrm{mE}_{\text {lab }}+\mathrm{m}^{2} V_{\mathrm{cm}}^{2}-\mathrm{mV}_{\mathrm{cm}} \mathrm{qe} B Z / \pi}}\right)$

- Map Iab angle onto the longitudinal position (z)
- Linear relation between Q value and proton lab energy
- Q resolution
- Target energy losses
- Longitudinal (z) position
- Detector resolutions

HELIcal Orbit Spectrometer (HELIOS)

2.85 T maximum field 1 meter of uniform field 90 cm diameter

Prototype PSD Si array

HELIOS

HELIOS at ATLAS

Argonne

Secondary in-flight beams at ATLAS

Used in a measurement

 Accessible isotopes

Reactions used to probe the neutron sd orbitals with HELIOS

Single-neutron adding reactions

${ }^{19} \mathrm{O}(d, p)^{20} \mathrm{O}$

Single-particle evolution along Z = 8

B. Fernandez-Dominquez et al., PRC 84, 011301 (2011)
A. Schiller et al., PRL 99, 112501 (2007)
Z. Elekes et al., PRL 98, 102502 (2007)
T. Otsuka et al., PRL 105, 032501 (2010)

Components driving the single-particle evolution

- Parts of the NN interaction
- Inclusion of three-body effects
- Impact of scattering into the continuum
S. C. Pieper and R. B. Wringa, Annu. Rev. Nucl. Part. Sci. 51, 53 (2001)
T. Otsuka et al., PRL 105, 032501 (2010)
G. Hagen et al., PRL 108, 242501 (2012)
A. Volya, PRC 79, 044308 (2009)
K. Tsukiyama et al. PRC 80, 051301(R); arXiv:1001.0729 T. Otsuka et al., PRL 87, 082502 (2001), 95, 232502 (2005)

${ }^{19} 0(d, p)^{20} 0$ data

- 8 states identified up to 7 MeV
- FWHM ~ 175 keV
- Absolute σ from deuteron scattering (20\%)
- Angular distributions
- Distorted wave Born approximation
- Identified $I=03+$ level at 5.23 MeV

[^0]
${ }^{19} 0(d, p){ }^{20} 0$ results

C. R. Hoffman et al., PRC 85, 054318 (2012)

- Distorted wave analysis to extract spectroscopic factors
- Normalized to ${ }^{16} \mathrm{O}(\mathrm{d}, \mathrm{p})^{17} \mathrm{O}$ data
- 30\% uncertainty in total
- 12% relative to one-another
- Checks w/ sum rules \& 18O(d,p) ${ }^{19}$ O data
- Superb reproduction of strength by sd shell interactions
- Some strength to 2p-2h (1p1h) dominated states
- 0^{+}@ 4.46 MeV
- 4.99 or 5.64 MeV states
- SOLID \rightarrow I = 0 HATCHED $\rightarrow I=2$
C. M. Perey and F. G. Perey, PR 132, 755 (1963)

Diagonal $T=1$ TBME of the empirical $N N$ interaction

- Consider ${ }^{20} \mathrm{O}$ as two-neutron holes inside $22 \mathrm{O}\left(\mathrm{N}=140 \mathrm{~d}_{5 / 2}\right)$ neutron shell
- ${ }^{22}$ O is a good closed core $\&>97 \%$ of strength belongs to $0 d_{5 / 2}$

$$
E_{0}=2 B\left[{ }^{21} \mathrm{O}\right]-B\left[{ }^{20} \mathrm{O}\right]-B\left[{ }^{22} \mathrm{O}\right]=-3.04(6) \mathrm{MeV}, \quad\left\langle\left(d_{5 / 2}\right)^{2} J\right| V\left|\left(d_{5 / 2}\right)^{2} J\right\rangle=E_{0}+\frac{\sum(2 J+1) C^{2} S \cdot E^{*}}{\sum(2 J+1) C^{2} S}
$$

- Consistent with ${ }^{18} 0$ and survey results
- Slight disagreement for smallest J=4 TBME
- No change between $N=10-12$ for $Z=8$
- Technique is applicable to unbound nuclei near closed shells
J. P. Schiffer and W. W. True, Rev. Mod. Phys. 48, 191 (1976)
T. K. Li et al., PRC 13, 55 (1976)
${ }^{17} \mathrm{~N}(d, p)^{18} \mathrm{~N}$

Single-particle evolution across isotones

${ }^{17} \mathbf{N}(d, p)^{18} \mathbf{N}$ data

- 180 beam (-1p) on Be
- Calculate Q value spectra
- 30 keV systematic uncertainty in energy
- ~275 keV FWHM
- Test with ${ }^{18} 0(d, p)$ reaction
- Population of three strong states
- $0.12 \mathrm{MeV}(2-)$
- 0.74 MeV (3-)
- 1.20 MeV unknown
- Little ground state or 0.587MeV state population
- Some strength at ~2.2 MeV and above $\mathrm{S}_{\mathrm{n}}=2.83 \mathrm{MeV}$

17N(d,p) ${ }^{18} \mathbf{N}$ results

- Relative cross sections uncertain to a few percent
- Distorted wave Born approximation analysis
- Angular distributions reproduced ${ }^{18} \mathrm{O}(d, p)^{19} \mathrm{O}$ as well
- Relative spectroscopic factors
- $0.12-\mathrm{MeV}$ and $0.74-\mathrm{MeV}(I=2)$, identified as $2-\& 3$ - states $\left[\left(0 d_{5 / 2}\right)^{3} \mathrm{w} / J=5 / 2\right]$
- $1.2-\mathrm{MeV}$ state is new $I=0$ state, likely $1-\left[\left(0 d_{5 / 2}\right)^{2}\left(1 s_{1 / 2}\right)^{1} J=1 / 2\right]$
- Strength distribution well reproduced by WBP shell model interaction

$N=11\left(0 d_{5 / 2}\right)^{3}$ and $\left(0 d_{5 / 2}\right)^{2}\left(1 s_{1 / 2}\right)^{1}$ neutron systematics

- Centroids for 3/2+ and $1 / 2^{+}$states relative to 5/2+
- Function of $0 p_{1 / 2}$ occupancy
- $\mathrm{C}^{2} \mathrm{~S}(2 J+1)$ weighting for 18 N
- $1 / 2+-5 / 2^{+}$slope of 840 keV (210 keV)

Calculated systematics for $\mathbf{N}=11$

- WBP shell model interaction
- Only linear if plotted with calculated $0 p_{1 / 2}$ occupancies
- Too weak of an $0 p_{3 / 2}-0 p_{1 / 2}$ gap?
- Improper neutron occupancies?

${ }^{{ }^{2} Z}$	J^{π}	$\pi 0 p_{3 / 2}$	$\pi 0 p_{1 / 2}$	$\nu 0 d_{5 / 2}$	$\nu 1 s_{1 / 2}$	$\nu 0 d_{3 / 2}$
${ }^{19} \mathrm{O}$	$5 / 2^{+}$	4.0	2.0	2.7	0.2	0.1
	$3 / 2^{+}$	4.0	2.0	2.6	0.3	0.1
	$1 / 2^{+}$	4.0	2.0	1.9	1.0	0.1
${ }^{18} \mathrm{~N}$	$2^{-}-3^{-}$	3.9	1.1	2.5	0.4	0.1
	$1^{-}-2^{-}$	3.9	1.1	2.4	0.5	0.1
	$0^{-}-1^{-}$	3.9	1.1	1.9	1.0	0.1
${ }^{17} \mathrm{C}$	$3 / 2^{+}$	3.6	0.4	2.3	0.5	0.2
	$5 / 2^{+}$	3.6	0.4	2.3	0.5	0.2
	$1 / 2^{+}$	3.6	0.4	1.9	1.0	0.1

1.5
1
0.5
0
-0.5
M. Stanoiu et al., PRC 78, 034315 (2008)
E. K. Warburton and B. A. Brown, PRC 46, 923 (1992)

Predictions of low-lying levels in neutrondeficient Z = 11 nuclei: $17,18 \mathrm{Na}$

- Use experimental relation to extrapolate to larger T
- Assumes isospin symmetry
- Anchor at ${ }^{19} \mathrm{Na} 5 / 2^{+}$, $3 / 2^{+}$, and $1 / 2^{+}$levels
- Can binding energies be extracted?

				${ }^{17} \mathbf{N a}$	${ }^{18} \mathbf{N a}$	${ }^{19} \mathbf{N a}$
		$\mathrm{E}^{*}\left({ }^{17} \mathrm{Na}\right)$				
	Present	$\mathrm{V} 2[\mathrm{SM}][31]$	MCM [32]			
1/2 ${ }^{+}$	0.0	0.0[0.0]	0.0			
$3 / 2^{+}$	0.64	0.67 [0.33]	0.17			
$5 / 2^{+}$	0.94	1.03 [0.67]	0.57			
					F. de Olivera Santos et al [31] H. T. Fortune and [32] N. K. Timofeyuk and P.	005) and Ref. therein , 027310 (2010) PRC 81, 051301 (2010)

Summary and conclusions

- Transfer reactions in inverse kinematics are important and difficult
- HELIOS provides improved Q value resolution, particle-ID, solid angle coverage etc...
- Used direct reactions with HELIOS to characterize the neutron sd orbitals
- ${ }^{17} \mathrm{~N}(\mathrm{~d}, \mathrm{p})^{18} \mathrm{~N}$ - track evolution as a function of proton occupancy
- ${ }^{19} \mathrm{O}(\mathrm{d}, \mathrm{p})^{20} \mathrm{O}$ - track evolution as a function of neutron occupancy
- ${ }^{19} \mathrm{O}(\mathrm{d}, \mathrm{p})^{20} \mathrm{O} \&{ }^{17} \mathrm{~N}(\mathrm{~d}, \mathrm{p})^{18} \mathrm{~N}$ results
- $0 d_{5 / 2}$ and $1 s_{1 / 2}$ neutron strengths are well described by standard shell model calculations [USD, USDA (B), WBP(T)]
- Extracted diagonal two-body matrix elements are in agreement with ${ }^{17} \mathrm{O}(\mathrm{d}, \mathrm{p})^{18} \mathrm{O}$ results as well as global survey
- Linearity of $N=11$ single-particle evolution for $Z=6$ - 8
- Challenge for WBP interaction
- Prediction of ${ }^{17} \mathrm{Na}$ spectrum from measured relations
- Expanding program utilizing HELIOS and the Argonne National Laboratory's ATLAS Facility

Acknowledgments

HELI $\odot S$
M. Albers, M. Alcorta, S. Almaraz-Calderon, B.B. Back, S.I. Baker, S. Bedoor, P.F. Bertone, J.A. Clark, A. Couture, C.M. Deibel, B. DiGiovine, S.J. Freeman, J.P. Greene, D. Henderson, M. Hendricks, B. P. Kay, J. Lai, H.-Y. Lee, J.C. Lighthall, S.T. Marley, T. Palchan-Hazan, R.C. Pardo, G. Perdikakis, K.E. Rehm, A.M. Rogers, J. Rohrer, A. Rojas, D. Santiago-Gonzalez, G. Savard, J.P. Schiffer, B. Scott, D.K. Sharp, D.V. Shetty, J.S. Thomas, A.W. Vann, R. C. Vondrasek, M. Wiedeking, I. Wiedenhover, J. Winkelbabuer, and A.H. Wuosmaa

Argonne National Laboratory, University of Manchester, MSU/NSCL, Western Michigan University, Florida State University, Los Alamos National Laboratory, JINA, Louisiana State University, University of York, Lawrence Berkeley National Laboratory

Email: crhoffman@phy.anl.gov

Future developments and plans

- New position sensitive Si detector array (ANL/WMU)
- Quantized resistive readout
- $\sim 30-40 \%$ increase in solid angle coverage
- Digital electronics
- High flexibility
- Gas target has been commissioned (ANL/LSU)
- $3 \mathrm{He}, 4 \mathrm{He}$, etc. targets available
- 1, 2, 3mm thickness w/ cryocooling
- ~300 keV FWHM
- Development of new RIBs
- 2n transfer for in-flight beams
- First experiments with CARIBU beams

Position

[^0]: C. R. Hoffman et al., PRC 85, 054318 (2012)

