Results from single-neutron adding reactions on light neutron-rich nuclei with HELIOS*

C. R. Hoffman¹, M. Albers¹, M. Alcorta¹, S. Almaraz-Calderon¹, S. I. Baker¹, B. B. Back¹,

S. Bedoor², P. F. Bertone¹, J. A. Clark¹, C. M. Deibel^{1,3}, S. J. Freeman⁴, B. P. Kay^{1,5}, J. C. Lighthall^{1,2},

S. T. Marley^{1,2}, T. Palchan-Hazan¹, G. Perdikakis^{3,6}, K. E. Rehm¹, A. M. Rogers¹, A. Rojas⁷,

D. Santiago-Gonzalez⁷, J. P. Schiffer¹, D. K. Sharp⁴, D. V. Shetty², J. S. Thomas⁴, I. Wiedenhover⁷,

and A. H. Wuosmaa²

¹ Argonne National Laboratory, Argonne, IL 60439, USA

² Western Michigan University, Kalamazoo, MI 49008, USA

³ JINA, Michigan State University, East Lansing, MI 48824, USA

⁴ University of Manchester, Manchester M13 9PL, UK

⁵ University of York, Heslington, York YO10 5DD, UK

⁶ NSCL, Michigan State University, East Lansing, MI 48824, USA

⁷ Florida State University, Tallahassee, FL 32306, USA

Contact email: crhoffman@phy.anl.gov

The distribution of the single-neutron strength in the sd shell was investigated through a series of neutronadding experiments utilizing radioactive beams produced by the Argonne National Laboratory ATLAS in-flight facility[1]. The ¹⁹O(d, p) and ¹⁷N(d, p) direct reactions at beam energies of 6.6 MeV/u ($\sim 10^5$ pps) and 13.5 MeV/u ($\sim 10^4$ pps), respectively, were carried out in inverse kinematics. Outgoing protons were measured in coincidence with heavy-ion recoils by the helical orbit spectrometer (HELIOS)[2]. Eight levels in ²⁰O up to an excitation energy of ~ 6 MeV, including a previously unobserved $J^{\pi} = 3^+$ level at $E^* = 5.23$ MeV, were observed. In addition, three strongly populated states in ¹⁸N below $S_n = 2.8$ MeV, including a previously unobserved $J^{\pi} = 1^-$ level at $E^* = 1.2$ MeV, were measured. Spectroscopic factors have been extracted from angular distributions through a distorted wave Born approximation.

Information from the ¹⁹O(d, p)²⁰O reaction has established empirical $\ell = 0$ and 2 strength distributions in this region (Z = 8, N = 12). The measurements are well reproduced by shell model calculations confined only to the sd shell. Furthermore, the data has allowed for a determination of the J = 0, 2 and $4, T = 1 \langle (0d_{5/2})^2 J | V | (0d_{5/2})^2 J \rangle$ empirical two-body matrix elements of the NN interaction which showed consistency with those previously deduced from ¹⁷O(d, p)¹⁸O data and a global survey. The $J^{\pi} = 2^{-}$ and 3^{-} levels in ¹⁸N at 0.12 MeV and 0.74 MeV, respectively, were identified in the present work as having dominant $\nu (0d_{5/2})_{J=5/2}^{3}$ neutron configurations coupled to an unpaired $\pi (0p_{1/2})^{-1}$ proton configuration. These levels, along with a newly found $J^{\pi} = 1^{-}$ level at 1.2 MeV, provide a glimpse of the energy centroid evolution for the neutron $(0d_{5/2})_{J=5/2,J=3/2}^{3}$ and $(0d_{5/2})^2 (1s_{1/2})_{J=1/2}^{1}$ configurations along the N = 11 isotones. This region runs from ¹⁹O, which has a $J^{\pi} = 5/2^{+}$ ground state, a high lying $1/2^{+}$ excited state, and a nearly filled proton $0p_{1/2}$ orbital, to the exotic ¹⁷C nucleus having a ground state $J^{\pi} = 3/2^{+}$ spin-parity and an almost vacant $0p_{1/2}$ proton orbital. Additional discussion will take place on these data in terms of modern shell-model calculations using interactions confined to the 0p-1s0d and 1s0d orbitals.

*This work is supported in part by the U.S. DOE, under Contract No. DE-AC02-06CH11357 and No. DE-FG02-04ER41320, the NSF under Grant Nos. PHY-02-16783, PHY-07-54674, PHY-07-58099, and the UK S&T Facilities Council.

[1] B. Harss et al., Rev. Sci. Instrum. 71, 380 (2000).

[2] A. H. Wuosmaa *et al.*, Nucl. Instr. Meth. A 580, 1290 (2007). J. C. Lighthall *et al.*, Nucl. Instr. Meth. A 622, 97 (2010).