Probing the semi-magicity of ⁶⁸Ni via the ³H(⁶⁶Ni,⁶⁸Ni)¹H and ²H(⁶⁶Ni,⁶⁷Ni)¹H transfer reactions in inverse kinematics

J. Elseviers¹ and the IS469 and IS504 collaboration²

¹ Instituut voor Kern-en Stralingsfysica, KULeuven, University of Leuven, B-3001 Leuven, Belgium ² ISOLDE, CERN, CH-1211 Genève 23, Switzerland

Contact email: jytte.elseviers@fys.kuleuven.be

The region around the nucleus ⁶⁸Ni, with a shell closure at Z = 28 and a sub-shell closure at N = 40, has drawn considerable interest over the past decades. ⁶⁸Ni has properties that are typical of a doubly-magic nucleus, such as a high excitation energy and low B(E2:2⁺-0⁺) transition probability for the first excited 2⁺ level [1-3] and a 0⁺ level as the first excited state [4]. However, it has been suggested that the magic properties of ⁶⁸Ni arise due to the fact that the N = 40 separates the negative parity pf shell from the positive parity 1g_{9/2} orbital [5,6], and indeed, recent mass measurements [7,8] have not revealed a clear N = 40 shell gap. Despite all additional information that was acquired over the last decade the specific role of the N = 40 is not yet understood.

Transfer reactions are a powerful tool to constrain spin and parities of excited states and to determine (relative) spectroscopic factors. Therefore two experiments were performed at ISOLDE, CERN, using one- and two-nucleon transfer reactions. In a first experimental campaign in 2009, the excitation spectrum of 67 Ni was studied by performing a (d,p)-reaction on 66 Ni in inverse kinematics. A 66 Ni beam of 2.85MeV/u was projected onto a 100µg/cm² CD₂ target and the resulting particles and gamma rays were detected using the MINIBALL setup [9] in combination with the T-REX particle detection array [10]. The excitation spectrum of odd mass nuclei, e.g. 67 Ni, in the direct neighborhood of closed shells, such as 68 Ni, is usually governed by single particle excitations. By measuring effective single-particle energies the shell gaps can then be fixed in order to further update the existing nuclear models.

In a second experimental campaign in 2011, ⁶⁸Ni was studied through a (t,p)-reaction on ⁶⁶Ni, using the same set-up as in the 2009 campaign. In this case a 2.6MeV/u ⁶⁶Ni beam was projected onto a tritium-loaded titanium target of $500\mu g/cm^2$. Thus, in this experiment a radioactive beam in combination with a radioactive target was used. The aim of this campaign was to measure the cross section for the population of the 0⁺ ground state and characterize the 0⁺ and 2⁺ excited states in ⁶⁸Ni.

The excitation spectrum and the angular distribution of the emitted protons can be used to determine the spin and parity of the states populated in ^{67,68}Ni. Further, excited states can be identified by using proton-gamma correlations. Preliminary results of such coincidence analysis, revealing the most populated states in the reactions, will be presented.

- [1] R. Broda et al., Phys. Rev. Lett. 74, 868 (1995).
- [2] O. Sorlin et al., Phys. Rev. Lett. 88, 092501 (2002).
- [3] N. Bree et al., Phys. Rev. C 78, 047301 (2008).
- [4] M. Bernas et al., Phys. Lett. B 113, 279 (1982).
- [5] H. Grawe and M. Lewitowicz, Nucl. Phys. A 693, 116 (2001).
- [6] K. Langanke et al., Phys. Rev. C 67, 044314 (2003).
- [7] S. Rahaman et al., Eur. Phys. J. A 34, 5 (2007).
- [8] C. Guénaut et al., Phys. Rev. C 75, 044303 (2007).
- [9] P. Reiter et al., Nucl. Phys. A 701, 209c (2002), N. Warr et al., will be submitted to Eur. Phys. J. A (2013).
- [10] V. Bildstein et al., Eur. Phys. J. A 48, 85 (2012).