CANDLES - Search for neutrino-less double beta decay of ⁴⁸Ca -

<u>S. Umehara</u>¹, T. Kishimoto¹, M. Nomachi¹, S. Yoshida², S. Ajimura¹, K. Ichimura¹, K. Suzuki², K. Matsuoka¹, N. Nakatan¹i, G. Ito², H. Kakubata², M. Saka², W. Wang², J. Takemoto², M.Doihara², T.Ishikawa², D.Tanaka², M.Tanaka², Y. Tamagawa³, I. Ogawa³, T. Ueno³, S. Maeda³, A. Yamamoto³, S. Tomita³, T.Fujita³, A. Kawamura³, T. Harada³, K. Fushimi⁴, R. Hazama⁵, H.Ohsumi⁶, K. Okada⁷

¹ Research Center for Nuclear Physics, Osaka University, Ibaraki, Osaka, Japan

² Graduate School of Science, Osaka University, Toyonaka, Osaka, Japan

³ Graduate School of Engineering, University of Fukui, Fukui, Japan

⁴ Faculty of Integrated Arts and Science, The University of Tokushima, Tokushima, Japan

⁵ Faculty of Human Environmental Studies, Osaka Sangyo University, Daitou, Osaka, Japan

 6 Faculty of Culture and Education, Saga University, Saga , Japan

⁷ Department of Computer Science and Engineering, Kyoto San-gyo University, Kyoto, Japan

Contact email: umehara@rcnp.osaka-u.ac.jp

CANDLES is the project to search for neutrino-less double beta decay $(0\nu\beta\beta)$ of ⁴⁸Ca. $0\nu\beta\beta$ is acquiring great interest after the confirmation of neutrino oscillation which demonstrated nonzero neutrino mass. Measurement of $0\nu\beta\beta$ provides a test for the Majorana nature of neutrinos and gives an absolute scale of the effective neutrino mass.

Among double beta decay nuclei, ⁴⁸Ca has an advantage of the highest Q-value (4.27 MeV). This large Q-value gives a large phase-space factor to enhance the $0\nu\beta\beta$ rate and the least contribution from natural background radiations in the energy region of the Q-value. Therefore good signal to background ratio is ensured in the measurement of $0\nu\beta\beta$.

In order to search for $0\nu\beta\beta$ of ⁴⁸Ca, we proposed CANDLES system by using CaF₂ scintillators[1]. The CANDLES system aims at a high sensitive measurement by a characteristic detector structure and ⁴⁸Ca enrichment. The detector structure realizes a complete 4π active shield by immersion of the CaF₂ scintillators in liquid scintillator. The active shield leads to a low background condition for the measurement. On the other band, ⁴⁸Ca enrichment is also effective for the high sensitive measurement, because natural abundance of ⁴⁸Ca is very low (0.19%). This means that an improvement of sensitivity by enrichment is a maximum of 20 times for the neutrino mass. However ⁴⁸Ca enrichment is generally difficult and expensive. Therefore we started the study of ⁴⁸Ca enrichment and succeeded in obtaining enriched ⁴⁸Ca although it is a small amount.

We installed the CANDLES III system, which contained 350 g of ⁴⁸Ca without enrichment, at the Kamioka underground laboratory. Now we installed a light-concentration system to a good energy resolution. A photo-coverage was about twice larger than the one without the light-concentration system. And we started a $0\nu\beta\beta$ measurement and have data of a measurement time for 3 months.

Here we will report the result of the measurement in 2012 and the expected sensitivity with the light-concentration system.

[1] T. Kishimoto et al., Proc. of 4th Workshop on Neutrino Oscillations and their Origin, 338 (2003);