# Formation of strange dibaryon $\mathbf{X}(\mathbf{2 2 6 5})$ in $p+p \rightarrow K^{+}+X$ reaction at $\mathbf{T}_{p}$ $=2.5$ and 2.85 GeV 

K. Suzuki ${ }^{1}$, P. Kienle ${ }^{2}$, M. Maggiora ${ }^{3}$, T. Yamazaki ${ }^{4,5}$ for the DISTO collaboration<br>${ }^{1}$ Stefan Meyer Institute for Subatomic Physics, Austrian Academy of Sciences, A-1090, Vienna, Austria<br>${ }^{2}$ Excellence Cluster Universe, Technische Universitüt München, Garching, Germany<br>${ }^{3}$ Dipartimento di Fisica Generale "A. Avogadro" and INFN, Torino, Italy<br>${ }^{4}$ Department of Physics, University of Tokyo, Tokyo, 113-0033 Japan<br>${ }^{5}$ RIKEN Nishina Center, Wako, Saitama, 351-0198 Japan

## Contact email: ken.suzuki@oeaw.ac.at

The so-called $X$ (2265) resonance state has been observed [1] in an exclusive data set of $p p \rightarrow p \Lambda K^{+}$ at $T_{p}=2.85 \mathrm{GeV}$ of DISTO data with a mass of $2267 \mathrm{MeV} / \mathrm{c}^{2}$ and a width 118 MeV . The $X(2265)$ state has a baryon number 2 and a strangeness -1 and it is possibly a candidate of the $(\bar{K} N N)_{S=0, I=1 / 2}$ kaonic nuclear system, often called $K^{-} p p$. We studied [2] the energy dependence of the production rate of the $X(2265)$ in the DISTO $p p \rightarrow p \Lambda K^{+}$data at $T_{p}=2.5$ and 2.85 GeV . If the $X(2265)$ is produced in a similar mechanism as a hyperon production in the $p p \rightarrow p \Lambda K^{+}$then the $X(2265)$ at $T_{p}=2.5$ GeV would be produced as much as $33 \%$ of the $T_{p}=2.85 \mathrm{GeV}$ case. However, if the $\Lambda(1405)$ plays an important role as a door way to the high density kaonic nuclear systems [3], then the production of the $X(2265)$ would be strongly suppressed at 2.5 GeV as the beam energy is too close to the production threshold of the $\Lambda(1405)$ and therefore $\Lambda(1405)$ is merely produced at that energy. We found in the 2.5 GeV data no clear sign of a formation of the $X(2265)$. This fits to the latter scenario, supporting that the $X(2265)$ resonance is the long-searched $K^{-} p p$ system.
[1] T. Yamazaki, P. Kienle, M. Maggiora, K. Suzuki et al., Phys. Rev. Lett. 104 (2010) 132502.
[2] P. Kienle, M. Maggiora, K. Suzuki, T. Yamazaki et al., Eur. Phys. J. A, 48 (2012) 183.
[3] T. Yamazaki and Y. Akaishi, Phys. Rev. C 76 (2007) 045201.

