Formation of strange dibaryon X(2265) in $p + p \rightarrow K^+ + X$ reaction at T_p = 2.5 and 2.85 GeV

K. Suzuki¹, P. Kienle², M. Maggiora³, T. Yamazaki^{4,5} for the DISTO collaboration

¹ Stefan Meyer Institute for Subatomic Physics, Austrian Academy of Sciences, A-1090, Vienna, Austria

² Excellence Cluster Universe, Technische Universität München, Garching, Germany

³ Dipartimento di Fisica Generale "A. Avogadro" and INFN, Torino, Italy

⁴ Department of Physics, University of Tokyo, Tokyo, 113-0033 Japan

⁵ RIKEN Nishina Center, Wako, Saitama, 351-0198 Japan

Contact email: ken.suzuki@oeaw.ac.at

The so-called X(2265) resonance state has been observed [1] in an exclusive data set of $pp \rightarrow p\Lambda K^+$ at $T_p = 2.85$ GeV of DISTO data with a mass of 2267 MeV/c² and a width 118 MeV. The X(2265)state has a baryon number 2 and a strangeness -1 and it is possibly a candidate of the $(\bar{K}NN)_{S=0,I=1/2}$ kaonic nuclear system, often called K^-pp . We studied [2] the energy dependence of the production rate of the X(2265) in the DISTO $pp \rightarrow p\Lambda K^+$ data at $T_p = 2.5$ and 2.85 GeV. If the X(2265) is produced in a similar mechanism as a hyperon production in the $pp \rightarrow p\Lambda K^+$ then the X(2265) at $T_p = 2.5$ GeV would be produced as much as 33% of the $T_p = 2.85$ GeV case. However, if the $\Lambda(1405)$ plays an important role as a door way to the high density kaonic nuclear systems [3], then the production of the X(2265) would be strongly suppressed at 2.5 GeV as the beam energy is too close to the production threshold of the $\Lambda(1405)$ and therefore $\Lambda(1405)$ is merely produced at that energy. We found in the 2.5 GeV data no clear sign of a formation of the X(2265). This fits to the latter scenario, supporting that the X(2265) resonance is the long-searched K^-pp system.

[1] T. Yamazaki, P. Kienle, M. Maggiora, K. Suzuki et al., Phys. Rev. Lett. 104 (2010) 132502.

- [2] P. Kienle, M. Maggiora, K. Suzuki, T. Yamazaki et al., Eur. Phys. J. A, 48 (2012) 183.
- [3] T. Yamazaki and Y. Akaishi, Phys. Rev. C 76 (2007) 045201.