A new experimental study of the 12Be cluster structure

Y. L. Ye, Z. H. Yang. H. B. You
School of Physics and State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, China, 100871

Contact email: yeyll@pku.edu.cn.

Neutron rich Beryllium isotopes have attracted much attention for their cluster or molecule structures at excited (resonant) states [1]. Experimentally one novel method, the inelastic excitation followed by coincidently recording the decay products, was applied to probe the molecule resonant states [2, 3]. But so far, the experimental results for ${ }^{12} \mathrm{Be}$ seem quite controversial. Freer et al reported the observation of molecule resonant states in ${ }^{6} \mathrm{He}+{ }^{6} \mathrm{He}$ channel and ${ }^{8} \mathrm{He}+{ }^{4} \mathrm{He}$ channel [2]. However, most of these resonances were not identified in a similar experiment carried out later on by Charity et al [3].

We have therefore carried out a new experiment with ${ }^{12} \mathrm{Be}$ secondary beam at $31.3 \mathrm{MeV} / \mathrm{u}$ provided by HIRFL-RIBLL facility in Lanzhou. Two charged fragments produced from the breakup of ${ }^{12} \mathrm{Be}$ on a Carbon target were coincidently recorded by a down-stream zero-degree telescope consisting of a 300um-thick double-sided silicon strip detector (DSSD) and a $4 * 4$ CsI scintillator array. Typical particle identification performance for coincidently measured Helium fragments is shown in Fig.1. The molecule resonant states were reconstructed from $4 \mathrm{He}+8 \mathrm{He}$ and ${ }^{6} \mathrm{He}+{ }^{6} \mathrm{He}$ decaying channels. These states agree well with previously reported results by Freer et al.[2], and therefore support the highly clustering structure of ${ }^{12} \mathrm{Be}$. Cross sections for these two breakup channels were also deduced.

Figure 1: Coincidently measured Helium fragments resulted from the inelastic excitation and decay of the ${ }^{12} \mathrm{Be}$ nucleus. The bands starting from the bottom are for $4 \mathrm{He}, 6 \mathrm{He}$ and 8 He , respectively.
[1] M. Ito, N. Itagaki, H. Sakurai, and K. Ikeda, Phys. Rev.Lett. 100, 182502 (2008); M. Ito, Phys. Rev. C 85, 044308 (2012).
[2] M. Freer, J. C. Angelique, L. Axelsson, et al., Phys. Rev. Lett. 82, 1383 (1999).
[3] R.J. Charity, S.A. Komarov, and L. G. Sobotka, et al., Phys. Rev. C 76, 064313 (2007).

