Measurement of astrophysically important excitation energies of ⁵⁸Zn with GRETINA

C. Langer^{1,2}, F. Montes^{1,2}, A. Aprahamian^{2,4}, D. W. Bardayan⁵, D. Bazin¹, J. Browne^{1,2},

H. Crawford⁶, C. Domingo-Pardo⁷, A. Gade^{1,3}, S. George⁸, P. Hosmer⁹, A. Kontos^{1,2}, I-Y. Lee⁶,

A. Lemasson¹, E. Lunderberg^{1,3}, Y. Maeda¹⁰, M. Matos¹¹, Z. Meisel^{1,2,3}, S. Noji¹, A. Nystrom^{2,4},

G. Perdikakis^{12,1}, J. Pereira^{1,2}, S. Quinn^{1,2,3}, F. Recchia¹, H. Schatz^{1,2,3}, M. Scott^{1,2,3}, K. Siegl^{2,4},

A. Simon^{1,2}, M. Smith^{2,4}, A. Spyrou^{1,2,3}, J. Stevens^{1,2,3}, R. Stroberg^{1,3}, D. Weisshaar¹, J. Wheeler^{1,2,3},

K. Wimmer^{12,1}, R.G.T. Zegers^{1,2,3}

¹ National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI, USA

² Joint Institute for Nuclear Astrophysics, Michigan State University, East Lansing, MI 48824, USA

³ Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824, USA

⁴ Department of Physics, University of Notre Dame, Notre Dame, Indiana 46556, USA

⁵ Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA

⁶ Nuclear Science Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley CA, 94720, USA ⁷ IFIC, CSIC-University of Valencia, E-46071 Valencia, Spain

⁸ Max-Planck-Institute for Nuclear Physics, PO Box 103980, 69029 Heidelberg, Germany

⁹ Department of Physics, Hillsdale College, Hillsdale, MI 49242, USA

¹⁰ Department of Applied Physics, University of Miyazaki, Miyazaki, Miyazaki 889-2192, Japan

¹¹ Department of Physics and Astronomy, Louisiana State University, Baton Rouge, Louisiana 70803-4001, USA

¹² Department of Physics, Central Michigan University, Mt. Pleasant, MI 48859, USA

Contact email: langer@nscl.msu.edu

Type I X-ray bursts are thermonuclear explosions taking place on an accreting neutron star in a lowmass X-ray binary system. The accreted material, consisting of H/He, heats up under high pressure and at a certain temperature a thermonuclear runaway is ignited. The main energy generation is driven by the rapid proton capture process (rp-process), which synthesizes elements up to $A \approx 100$ via fast $(p,\gamma),(\alpha,\gamma)$ and (α,p) reactions, and slower β^+ and electron-capture decays. Along the reaction path of the rp-process, several waiting points affecting element and energy production have been identified. Of special interest is doubly-magic ⁵⁶Ni. It has been shown that the reaction ⁵⁷Cu(p, γ)⁵⁸Zn determines the effective lifetime of ⁵⁶Ni since the electron-capture lifetime of ⁵⁶Ni is larger than 1000 s and ⁵⁶Ni is in $(p,\gamma) - (\gamma,p)$ equilibrium with ⁵⁷Cu at rp-process temperatures. Proton capture on ⁵⁷Cu is the only open break-out reaction channel within typical burst timescales. So far, the rate was only calculated theoretically with large uncertainties due to the unknown level structure of ⁵⁸Zn.

At the National Superconducting Cyclotron Laboratory we studied the astrophysically important excitation energies of ⁵⁸Zn, which determine the ⁵⁷Cu(p, γ)⁵⁸Zn rate. The secondary ⁵⁷Cu beam was produced by many-nucleon transfer reactions of a primary ⁵⁸Ni beam impinging on a Be target, and further purification and separation of the beam was performed using the A1900 fragment separator. The secondary beam was transported to the S800 large-acceptance spectrometer, where a CD₂ target with a thickness of 200 mg/cm² was installed and surrounded by the next-generation gamma-ray detector GRETINA. Excited levels in ⁵⁸Zn were populated using a (d,n) reaction in the secondary target, and the de-excitation γ -rays were measured.

The presentation will focus on the details of the study and present the measured excitation energies of astrophysically important 2^+ states in 58 Zn and their astrophysical implications.