Evidence of correlated $2 n$ transfer in the ${ }^{12} \mathrm{C}\left({ }^{18} \mathrm{O},{ }^{16} \mathrm{O}\right){ }^{14} \mathrm{C}$ reaction

M. Cavallaro ${ }^{1}$, F. Cappuzzello ${ }^{1,2}$, M. Bondì ${ }^{1,2}$, D. Carbone ${ }^{1,2}$, V. N. Garcia ${ }^{3}$, A.Gargano ${ }^{4}$, S.M.Lenzi ${ }^{5}$, J. Lubian ${ }^{3}$, C. Agodi ${ }^{1}$, F. Azaiez ${ }^{6}$, M. De Napoli ${ }^{7}$, A.Foti ${ }^{2,7}$, S. Franchoo ${ }^{6}$, R. Linares ${ }^{3}$, D. Nicolosi ${ }^{1,2}$, M. Niikura ${ }^{6}$, J. A. Scarpaci ${ }^{6}$, S. Tropea ${ }^{1,2}$
${ }^{1}$ INFN - Laboratori Nazionali del Sud, Italy
${ }^{2}$ Dipartimento di Fisica e Astronomia, Università degli Studi di Catania, Italy
${ }^{3}$ Instituto de Física, Universidade Federal Fluminense, Niteroi, RJ, Brazil
${ }^{4}$ INFN - Sezione di Napoli, Italy
${ }^{5}$ INFN - Sezione di Padova, Italy
${ }^{6}$ Institut de Physique Nucléaire, Université Paris-Sud-11-CNRS/IN2P3, Orsay, France
${ }^{7}$ INFN - Sezione di Catania, Italy
Contact email: manuela.cavallaro@lns.infn.it

A study of the $\left({ }^{18} \mathrm{O},{ }^{16} \mathrm{O}\right)$ two-neutron transfer reaction at 84 MeV incident energy was pursued at the Catania INFN-LNS laboratory. The experiments were performed on several solid targets from light $\left({ }^{9} \mathrm{Be},{ }^{11} \mathrm{~B},{ }^{12,13} \mathrm{C},{ }^{16} \mathrm{O},{ }^{28} \mathrm{Si}\right)$ to heavier ones $\left({ }^{58,64} \mathrm{Ni},{ }^{120} \mathrm{Sn},{ }^{208} \mathrm{~Pb}\right)$. The ${ }^{16} \mathrm{O}$ ejectiles were detected at forward angles by the MAGNEX magnetic spectrometer [1]. Exploiting the large momentum acceptance (20%) and solid angle (50 msr) of the spectrometer, energy spectra were obtained with a relevant yield up to about 20 MeV excitation energy [2]. The application of the powerful trajectory reconstruction technique did allow to get energy spectra with energy resolution of about 150 keV and angular distributions with angular resolution better than 0.3°. In the energy spectra, several known low lying and resonant states of the product nuclei have been observed.

The measured absolute cross-section angular distributions are analyzed by Exact Finite Range Coupled Reaction Channel calculations based on a parameter free double-folding optical potential [3]. The form factors for the $\left({ }^{18} \mathrm{O},{ }^{16} \mathrm{O}\right)$ reaction are extracted within an extreme cluster and independent particles scheme with shell model derived coupling strengths. The results show that the measured cross-sections are accurately described for the first time without the need of any arbitrary scaling factor.

This is a completely new result that opens the door to the use of the $\left({ }^{18} \mathrm{O},{ }^{16} \mathrm{O}\right)$ as powerful tools for quantitative spectroscopic studies of single-particle and pair configurations in nuclear states. As a consequence, the controversial concept of spectroscopic factor for two-neutron pair states can be better defined.
[1] F. Cappuzzello et al., MAGNEX: an innovative large acceptance spectrometer for nuclear reaction studies in: Magnets: Types, Uses and Safety, Nova Publisher Inc., New York, 2011, pp 163.
[2] M. Cavallaro, et al., Eur. Phys. J. A (2012) 48: 59.
[3] L.C. Chamon, et al., Phys. Rev. Lett. 79 (1997) 5218.

