International Nuclear Physics Conference INPC2013: 2-7 June 2013, Firenze, Italy

Evidence of correlated 2n transfer in the ${}^{12}C({}^{18}O, {}^{16}O){}^{14}C$ reaction

<u>M. Cavallaro¹</u>, F. Cappuzzello^{1,2}, M. Bondì^{1,2}, D. Carbone^{1,2}, V. N. Garcia³, A.Gargano⁴, S.M.Lenzi⁵, J. Lubian³, C. Agodi¹, F. Azaiez⁶, M. De Napoli⁷, A.Foti^{2,7}, S. Franchoo⁶, R. Linares³, D. Nicolosi^{1,2}, M. Niikura⁶, J. A. Scarpaci⁶, S. Tropea^{1,2}

¹ INFN – Laboratori Nazionali del Sud, Italy
² Dipartimento di Fisica e Astronomia, Università degli Studi di Catania, Italy
³ Instituto de Física, Universidade Federal Fluminense, Niteroi, RJ, Brazil
⁴ INFN - Sezione di Napoli, Italy
⁵ INFN - Sezione di Padova, Italy
⁶ Institut de Physique Nucléaire, Université Paris-Sud-11-CNRS/IN2P3, Orsay, France
⁷ INFN - Sezione di Catania, Italy

Contact email: manuela.cavallaro@lns.infn.it

A study of the (¹⁸O,¹⁶O) two-neutron transfer reaction at 84 MeV incident energy was pursued at the Catania INFN-LNS laboratory. The experiments were performed on several solid targets from light (⁹Be, ¹¹B, ^{12,13}C, ¹⁶O, ²⁸Si) to heavier ones (^{58,64}Ni, ¹²⁰Sn, ²⁰⁸Pb). The ¹⁶O ejectiles were detected at forward angles by the MAGNEX magnetic spectrometer [1]. Exploiting the large momentum acceptance (20%) and solid angle (50 msr) of the spectrometer, energy spectra were obtained with a relevant yield up to about 20 MeV excitation energy [2]. The application of the powerful trajectory reconstruction technique did allow to get energy spectra with energy resolution of about 150 keV and angular distributions with angular resolution better than 0.3°. In the energy spectra, several known low lying and resonant states of the product nuclei have been observed.

The measured absolute cross-section angular distributions are analyzed by Exact Finite Range Coupled Reaction Channel calculations based on a parameter free double-folding optical potential [3]. The form factors for the (¹⁸O,¹⁶O) reaction are extracted within an extreme cluster and independent particles scheme with shell model derived coupling strengths. The results show that the measured cross-sections are accurately described for the first time without the need of any arbitrary scaling factor.

This is a completely new result that opens the door to the use of the (¹⁸O,¹⁶O) as powerful tools for quantitative spectroscopic studies of single-particle and pair configurations in nuclear states. As a consequence, the controversial concept of spectroscopic factor for two-neutron pair states can be better defined.

[1] F. Cappuzzello et al., *MAGNEX: an innovative large acceptance spectrometer for nuclear reaction studies* in: Magnets: Types, Uses and Safety, Nova Publisher Inc., New York, 2011, pp 1-63.

[2] M. Cavallaro, et al., Eur. Phys. J. A (2012) 48: 59.

[3] L.C. Chamon, et al., Phys. Rev. Lett. 79 (1997) 5218.