Transfer vs. Breakup in the interaction of the ⁷Be Radioactive Ion Beam on a ⁵⁸Ni target at Coulomb barrier energies

M. Mazzocco¹, D. Torresi¹, L. Acosta², A. Boiano³, C. Boiano⁴, N. Fierro¹, T. Glodariu⁵,

A. Guglielmetti⁴, M. La Commara^{3,6}, I. Martel², C. Mazzocchi⁴, P. Molini¹, A. Pakou⁷, C. Parascandolo¹, V.V. Parker², N. Patronis⁷, D. Pierroutsakou³, M. Romoli³, A.M. Sanchez-Benitez², M. Sandoli^{3,6}, C. Signorini¹, R. Silvestri^{3,6}, F. Soramel¹, E. Stiliaris⁸, E. Strano¹, L. Stroe⁵, K. Zerva⁷

¹Dipartimento di Fisica e Astronomia, Università di Padova and INFN - Padova, Italy ²Departamento de Fisica Aplicada, Universidad de Huelva, Spain ³INFN - Napoli, Italy ⁴Dipartimento di Fisica, Università di Milano and INFN - Milano, Italy ⁵NIPNE, Romania ⁶Dipartimento di Scienze Fisiche, Università di Napoli, Italy ⁷Dept. of Physics, University of Ioannina, Greece ⁸Dept. of Physics, University of Athens, Greece

Contact email: marco.mazzocco@pd.infn.it

The reaction dynamics induced by light weakly-bound Radioactive Ion Beams (RIBs) in the energy range around the Coulomb barrier is strongly affected by the exotic features of light RIBs. Recent experiments [1] showed that the reaction probability is largely enhanced when compared to reactions induced by stable well-bound projectiles, and that this enhancement is mainly triggered by direct reaction mechanisms, such as transfer and breakup. To investigate the role played by different direct processes and their mutual interplay, we have studied the system $^{7}\text{Be} + ^{58}\text{Ni}$ at 22 MeV. The ⁷Be ($S_{\alpha} = 1.586$ MeV) RIB was produced by means of the beam-line EXOTIC [2] at the INFN-Laboratori Nazionali di Legnaro (Italy). A secondary beam intensity of ~ 3×10^5 pps was achieved. Charge reaction products were detected by means of 4 ΔE (40 µm) - E (1000 µm) silicon telescopes of the detector array DINEX [3] in the angular ranges $\theta_{lab} = [40^\circ, 75^\circ]$ and $\theta_{lab} = [115^\circ, 150^\circ]$.

Figure 1: ⁷Be (left) and ^{3,4}He (right) angular distributions for the system ⁷Be+⁵⁸Ni at 22 MeV.

Fig. 1 left panel shows the ⁷Be elastic scattering angular distribution, from which we extracted a reaction cross section of 576 ± 20 mb, in good agreement with Ref. [4]. Fig. 1 right panel displays the angular distributions for ^{3,4}He reaction products. Their angle-integrated cross sections sum up to ~ 20 mb and ~ 100 mb for ³He and ⁴He, respectively. The large difference in the production cross sections for the two helium isotopes indicates that the strongest populated reaction mechanism in this energy range is the ³He-stripping: ⁷Be + ⁵⁸Ni \rightarrow ⁴He + ⁶¹Zn (Q_{gg} = + 9.46 MeV). Moreover, within the statistics collected by our experiment, no ³He-⁴He coincidences were detected, leading to the conclusion that the breakup channel $^7\text{Be} \rightarrow {}^3\text{He} + {}^4\text{He}$ plays a minor role in the reaction dynamics induced at near-barrier energies by light RIBs (at least) on medium-mass targets.

[1] N. Keeley et al., Prog. Part. Nucl. Phys. 63, 396 (2009) and references therein.

- [2] F. Farinon et al., Nucl. Instrum. Meth. B 266, 4097 (2008).
- [3] A.M. Sanchez-Benitez et al., J. Phys. G **31**, S1953 (2005).
- [4] E.F. Aguilera et al., Phys. Rev. C 79, 021601(R) (2009).