β -decay studies of neutron-rich nuclei in the vicinity of ⁷⁸Ni

Z. Xu¹, S. Nishimura², G. Lorusso², P. Doornenbal², T. Sumikama³, P. Söderström², H. Watanabe⁴, H. Baba², F. Browne^{2,5}, G. Gey^{2,6}, T. Isobe², H. S. Jung⁷, Y.K. Kwon⁸, Z. Li⁹, K. Matsui¹,

M. Niikura¹, H. Nishibata¹⁰, A. Odahara¹⁰, H. Sakurai^{1,2}, G.L. Stefan¹¹, J. Taprogge^{2,12,13}, J. Wu^{2,7},

A. Yagi¹⁰, K. Yoshinaga¹⁴, and Z. Vajta^{2,15} for EURICA collaborators

¹ Department of Physics, University of Tokyo, Hongo 7-3-1, Bunkyo-ku, 113-0033 Tokyo, Japan ² RIKEN Nishina Center, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan

³ Department of Physics, Tohoku University, 2-1-1 Katahira, Aoba, Sendai, Miyagi 980-8577, Japan

⁴ Department of Physics, Beihang University, Beijing 100191, China

⁵ School of Environment and Technology, University of Brighton, Brighton BN2 4GJ, United Kingdom

⁶ Université Joseph Fourier Grenoble 1-B.P. 53-38041, Grenoble, France

⁷ Department of Physics, University of Notre Dame, Notre Dame, Indiana 46556, USA

⁸ Institute for Basic Science, Daejeon 305-811, Republic of Korea

⁹ Department of Physics, Peking University, Beijing 100871, China

¹⁰ Department of Physics, Osaka University, Machikaneyama 1-1, Toyonaka, Osaka 560-0043, Japan ¹¹ IPN-Orsay, F-91406 Orsay, France

¹² Departamento de Física Teórica, Universidad Autónoma de Madrid, E-28049 Madrid, Spain
¹³ Instituto de Estructura de la Materia, CSIC, E-28006 Madrid, Spain

¹⁴ Department of Physics, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan

¹⁵ Institute of Nuclear Research of the Hungarian Academy of Sciences, P. O. Box 51, Debrecen, H-4001,

Hungary

Contact email: xuzy@ribf.riken.jp

Studies of β -decay properties including half lives measurements as well as investigations on β delayed γ -ray spectroscopy in neutron-rich nuclei are of great interests not only for nuclear physics but also for astrophysics. It serves as a good testing ground for various applications and theories that try to understand and predict the changing of shell structure as one moves farther from stability toward the neutron drip-line.

Recently, an experiment aiming at studying nuclei around doubly magic ⁷⁸Ni has been performed as EURICA campaign at RIBF, RIKEN. A highly segmented silicon stopper named as WAS3ABi DSSD array is mounted at F11 focal plain of ZeroDegree spectrometer, surrounded by EUROBALL γ -ray detectors array, which consists of 12 germanium clusters. Nuclear structure around ⁷⁸Ni were studied via β -decay of very neutron-rich nuclei in the vicinity of ⁷⁸Ni produced by inflight fission of a 345-MeV/nucleon ²³⁸U beam at RIBF. The β -decay measurements were realized by performing timingposition correlation between implanted heavy ions and β -particles. With the help of the high beam intensity at RIBF, many new half lives were measured: half lives of ⁷⁶Co, ⁷⁹Ni, ⁸¹Cu, ⁸⁴Zn, ⁸⁶Ga, ⁸⁸Ge and so on, have been measured for the first time. Also, nuclei such as ⁷⁸Ni, which have been measured in previous experiment but resulted in a large error bar, are re-measured in this campaign with much higher statistics. The new half lives coming from the experiment allow for systematic studies and comparisons of different mass models and theoretical calculations around ⁷⁸Ni.

On the other hand, taking advantage of the high effciency of the EUROBALL γ -ray detectors array, β -delayed spectroscopy have also been studied in details. β - γ as well as β - γ - γ decay spectrum of nuclide along Ni isotope-chain have been taken from the experiment. It is of great importance to study the low-lying states of odd Cu isotopes as states with large collectivities as well as strong monopole migration effect were observed experimentally in odd-mass Cu nuclides at N > 40, which manifest a strong evidence of shell erosion at Z = 28 in this mass region. Level schemes of odd Cu isotopes built from the new data set will largely extends present knowledge of the evolution of the nuclear shell structure approaching doubly magic ⁷⁸Ni. Some of the results will be summarized and reported in this presentaion.