Kinematically complete measurements of Coulomb breakup of Borromean halo nuclei at the SAMURAI facility at RIBF

<u>T. Nakamura</u>¹, R. Minakata¹, S. Ogoshi¹, Y. Kondo¹, R. Tanaka¹, T. Kobayashi², N.A. Orr³, H. Otsu⁴, K. Yoneda⁴, T. Isobe⁴, N. Kobayashi¹, N.L. Achouri³, T. Aumann^{5,6}, H. Baba⁴, F. Delaunay³, P. Doornenbal⁴, N. Fukuda⁴, J. Gibelin³, Jong Won Hwang⁷, N. Inabe⁴, M. Ishihara⁴, D. Kanno¹, D. Kameda⁴, S. Kim⁷, T. Kubo⁴, S. Leblond³, J. Lee⁴, F.M. Marqués³, T. Motobayashi⁴, D. Murai⁸, T. Murakami⁹, K. Muto², T. Nakashima¹, N. Nakatsuka⁹, S. Nishi¹, A. Navin¹⁰, H. Sato⁴, Y. Satou⁷, Y. Shimizu⁴, H. Suzuki⁴, K. Takahashi², H. Takeda⁴, S. Takeuchi⁴, Y. Togano¹, A.G. Tuff¹¹, M. Vanderbrouck¹²

¹ Department of Physics, Tokyo Institute of Technology, 2-12-1 O-Okayama, Meguro, Tokyo 152-8551, Japan

Department of Physics, Tohoku University, 2-1 Aoba, Aramaki, Aoba, Sendai 980-8578, Japan ³ LPC-Caen, ENSICAEN, Université de Caen, CNRS/IN2P3, F-14050, Caen Cedex, France

⁴ RIKEN Nishina Center, Hirosawa 2-1, Wako, Saitama 351-0198, Japan

⁵ Institut für Kernphysik, TU Darmstadt, D-64289 Darmstadt, Germany

⁶ Gesellschaft für Schwerionenforschung (GSI), D-64291 Darmstadt, Germany

⁷ Department of Physics and Astronomy, Seoul National University, Seoul 151-742, Korea

⁸ Department of Physics, Rikkyo University, 3-34-1, Nishi-Ikebukuro, Toshima, Tokyo 171-8501, Japan

⁹ Department of Physics, Kyoto University, Kyoto 606-8502, Japan

¹⁰ GANIL, CEA/DSM-CNRS/IN2P3, Bd Henri Becquerel, BP 55027, F-14076 Caen Cedex 5, France

¹¹ Department of Physics, University of York, York YO10 5DD, United Kingdom

¹² Institut de Physique Nucléaire, Université Paris-Sud, IN2P3-CNRS, F-91405 Orsay, France

Contact email: nakamura@phys.titech.ac.jp

We report here on some of the first results on kinematically complete measurements of breakup of neutron drip line nuclei using the recently commissioned large-acceptance multi-purpose spectrometer SAMURAI (Superconducting Analyser for MUlti-particles from Radio-Isotope Beam) facility, at the new-generation RI beam facility, RIBF, at RIKEN. The experiment was aimed at probing the two-neutron Borromean halo nuclei, focusing on ¹⁹B and ²²C, the exclusive measurements of which were only made possible by the use of the large-acceptance SAMURAI facility, coupled with secondary beams of unequaled intensity (100 and 15 pps, respectively). In the case of 22 C much attention has focused on the possibility that it has the largest halo known, as inferred from an extremely large reaction cross section [1]. In addition, ${}^{22}C$ may also exhibit features consistent with the new magic number N=16, as was recently suggested by our inclusive measurement of the momentum distribution of ²⁰C following breakup on a C target [2]. In the case of ¹⁹B, in addition to a Borromean character, interest centers on the possibility of a 4-neutron halo-like structure. Coulomb breakup is a powerful probe of haloes owing to the unique strong low-energy electric dipole strength (soft E1 excitation), sensitive to the halo part of the radial wave function. It has also been demonstrated that a kinematically complete measurement of Coulomb breakup can be used to study the halo neutron correlations [3,4]. The Coulomb breakup of ^{22}C and ¹⁹B was studied, as part of the first round of SAMURAI experiments, in May 2012. The momenta of all the beam-like reaction products ${}^{20}C({}^{17}B)+n+n$ were measured in coincidence following breakup on a thick Pb target at about 240 MeV/nucleon. In this presentation, in addition to the results from this work, those obtained for ¹⁴Be, with the highest statistics ever obtained, will be discussed. Finally, we will also present some perspectives on future projects using the SAMURAI facility.

[1] K. Tanaka et al., Phys. Rev. Lett. 104, 062701 (2010).

[2] N. Kobayashi, T. Nakamura et al., Phys. Rev. C 86, 054604 (2012).

[3] T. Nakamura et al., Phys. Rev. Lett. 96, 252502 (2006).

[4] T. Nakamura, Y. Kondo, Clusters in Nuclei Vol. 2, Lecture Notes in Physics Vol.848, Springer, ed. C.Beck (2012).