
Preliminary results of a more accurate measurement of the radiative 4⁺ to 2⁺ transition in ⁸Be

V.M.Datar¹, D.R. Chakrabarty¹, Suresh Kumar¹, V. Nanal², S.P. Behera¹, E.T. Mirgule¹, A. Mitra¹, K. Ramachandran¹, P.C. Rout¹, A. Shrivastava¹, R.G. Pillay², P. Sugathan³, C.J. Lister⁴, D. Jenkins⁵ and O. Roberts⁵

Contact email: vivek.datar@gmail.com

The direct observation of the 4⁺ to 2⁺ gamma transition in ⁸Be provided the first electromagnetic signature of its dumbbell like shape [1]. However the large error ~30% in the measured ⁴He+⁴He radiative capture cross section did not allow a stringent test of nuclear structure models. The aim of the present measurement was to improve the accuracy by about a factor of 3 so that it could be compared with predictions of the alpha cluster model and *ab initio* calculations which differ by ~20%. This was done by improving the 2- α detection through the use of a 500 μ m thick double sided segmented silicon strip detector with 2×16 θ strips and 16 ϕ strips, a 38 BGO detector array for γ -rays, two heavy-met shields surrounding the 1 mg/cm² kapton foils (isolating the gas target from the beam line vacuum) to reduce the beam induced 4.44 MeV γ -ray background and making the measurement at 4 beam energies straddling the 4⁺ resonance. A 2D spectrum of $E_{\alpha 1}+E_{\alpha 2}$ vs $E_{\gamma 2}$ extracted from the event by event data for $E_{\alpha 2}=22.5$ MeV, is shown in Fig. 1. A band with $E_{\gamma 2}\sim7.5$ MeV and $E_{\alpha 1}+E_{\alpha 2}\sim13$ MeV corresponds to the radiative capture events of interest. The preliminary results of the measurement at the 4 beam energies are shown in Table 1. The B(E2) value for the 4⁺ to 2⁺ extracted from the on-resonance cross section agrees with the cluster model calculation [2] but differs from the earlier *ab initio* calculations [3]. A more precise *ab initio* calculation is awaited [4].

$E_{\alpha}(MeV)$	$\sigma_{\gamma}(nb)$
19.2	85 ± 10
22.5	134 ± 14
24.7	103 ± 10
28.9	< 32

Fig. 1: 2D plot of $E_{\alpha l} + E_{\alpha 2}$ vs E_{γ}

Table 1: Radiative capture cross section for 4 beam energies.

- [1] V.M. Datar, Suresh Kumar, D. R. Chakrabarty, V. Nanal, E. T. Mirgule, A. Mitra, and H. H. Oza, Phys. Rev. Lett. **94**, 122502 (2005).
- [2] K. Langanke, C. Rolfs, Z. Phys. A 324, 307 (1986).
- [3] R.B. Wiringa, S.C. Pieper, J. Carlson, V.R. Pandharipande, Phys. Rev. C 62, 014001 (2000).
- [4] R.B. Wiringa, Private Communication.

Nuclear Physics Division, Bhabha Atomic Research Centre, Trombay, Mumbai-400085, India
Tata Institute of Fundamental Research Homi Bhabha Road, Colaba, Mumbai-400005, India
Inter University Accelerator Centre, Aruna Asaf Ali Marg, New Delhi-110067, India
Physics Division, Argonne National Laboratory, 9700 S. Cass Ave., Argonne, IL 60439, USA
Department of Physics, University of York, Heslington, York, Y010 5DD, UK