

Beta Decay of Exotic T_z = -1, -2 Nuclei: the Interesting Case of ⁵⁶Zn

Outline

Physics motivation

- Beta Decay
- Charge Exchange (CE) reactions
- Combined analysis

Experimental results

- β-decay spectroscopy at GANIL:
 - \checkmark T_z = -1 and T_z = -2 proton-rich nuclei
 - ✓ The exotic $T_z = -2$, ⁵⁶Zn decay
- Comparison with mirror (³He,t) CE experiment at RCNP Osaka

Summary and Outlook

β-decay transition strengths

- Advantage: absolute normalization of B(GT)
- Disadvantage: B(GT) only for the low-lying states (Q_β energy window)

Sonja Orrigo

Complementarity of β decay and CE reactions

On the other side, CE reactions also give information on B(F) and B(GT)

✓ At intermediate beam energies ($E_{inc} > 100 \text{ AMeV}$) and zero momentum transfer ($\vartheta \sim 0^\circ$)

T.N. Taddeucci et al., Nuclear Physics A 469 (1987) 125-172

$$\frac{d\sigma_{GT}^{CE}}{d\Omega}(0^{\circ})\Big|_{j} \cong \hat{\sigma}_{GT}(0^{\circ})B_{j}(GT)$$

$$\frac{d\sigma_F^{CE}}{d\Omega}(0^{\circ}) \cong \hat{\sigma}_F(0^{\circ})B(F)$$

- Advantage: highly excited states can be accessed
- Disadvantage: relative B(GT) are measured

Therefore β decay and CE are complementary

Combined analysis of the two processes

Combined analysis of β decay and CE

Inder the assumption of isospin symmetry, mirror GT and Fermi transitions from the $T_z = \pm 1$ nuclei to the $T_z = 0$ nucleus are expected to have the same transition strengths However, due to Coulomb interaction, complete symmetry is not always guaranteed

Y. Fujita et al., Physical Review Letters 95 (2005) 212501

Y. Fujita, B. Rubio, W. Gelletly, Progress in Particle and Nuclear Physics 66 (2011) 549-606

Sonja Orrigo

Study of T = 1, 2 nuclei in/above fp-shell

 \blacksquare A series of β decay and CE experiments starting from **mirror nuclei**

(1) T₂ = -1 nuclei at **GSI** and **GANIL** ⁵⁸**Zn**: waiting point in the rp-process F. Molina et al., AIP 1265 (2010) 49 L. Kucuk et al., PRC in preparation (2013)

Tz=-1

⁴⁶Cr

GSI

x 10

⁵⁸Ni²⁶⁺ (74.5 AMeV) + ^{nat}Ni @ GANIL

Half-life analysis for ${}^{56}Zn$ (T_z = -2)

 \blacksquare Each β decay is correlated with all the implants happening before in the same pixel of DSSSD

Sonja Orrigo

Measured DSSSD-decay-energy spectrum

Comparison of mirror transitions for A = 56

Constructing the ⁵⁶Zn decay scheme...

INPC 2013, Firenze, Italy

Sonja Orrigo

Measured gamma spectrum

Δ γ ray at 1835 keV is observed in the ⁵⁶Zn-correlated

 γ -spectrum corresponding to the de-excitation of the IAS

 \blacksquare Selecting this γ ray:

cross-check of the ⁵⁶7n half-life

Sonja Orrigo

Proton-gamma coincidences

We have observed for the first time beta-delayed gamma-proton emission

14 Counts / 2 keV Ē (b) 12**–** 10E F u ∎u ∎u 1100 1200 1300 Gamma energy [keV] 1000 700 800

Counts / 2 keV

12È

1500

Sonja Orrigo

⁵⁶Zn decay scheme

⁵⁶Zn decay scheme

Summary and Outlook

 \blacksquare T_z = -1 and T_z = -2 proton rich-nuclei have been studied by β decay experiments

giving access to rich spectroscopic information: $T_{1/2}$, β feedings, B(GT)...

Exotic decay of ⁵⁶Zn:

- ✓ A previously unknown decay scheme and the corresponding B(GT) values are determined

Ξ ⁵⁶Zn β⁺ decay ⇔ ⁵⁶Fe(³He,t)⁵⁶Co

- β decay and CE reactions are complementary tools: the mirror
- CE study has been very helpful to interpret the β -decay data
- Heavier and more exotic nuclei will be studied at RIKEN:

✓
$$T_z = -1$$
 ⁶²Ge and ⁶⁶Se

✓
$$T_z = -2^{60}$$
Ge and ⁶⁴Se

INPC 2013, Firenze, Italy

B⁺

The Collaboration

Beta Decay Of Exotic $T_Z = -1$ And $T_Z = -2$ Nuclei

S.E.A.Orrigo^a, B.Rubio^a, Y.Fujita^b, B.Blank^c, W.Gelletly^d, J.Agramunt^a, A.Algora^a, P.Ascher^c, B.Bilgier^e, L.Cáceres^f, R.B.Cakirli^e, H.Fujita^g, E.Ganioğlu^e, M.Gerbaux^c, J.Giovinazzo^c, S.Grévy^c, O.Kamalou^f, H.C.Kozer^e, L.Kucuk^e, T.Kurtukian-Nieto^c, F.Molina^{a,h}, L.Popescuⁱ, A.M.Rogers^j, G.Susoy^e, C.Stodel^f, T.Suzuki^g, A.Tamii^g and J.C.Thomas^f

^aInstituto de Física Corpuscular, CSIC-Universidad de Valencia, E-46071 Valencia, Spain
^bDepartment of Physics, Osaka University, Toyonaka, Osaka 560-0043, Japan
^cCentre d'Etudes Nucléaires de Bordeaux Gradignan, Université Bordeaux 1, Gradignan, France
^dDepartment of Physics, University of Surrey, Guilford GU2 7XH, Surrey, UK
^eDepartment of Physics, Istanbul University, Istanbul, Turkey
^fGrand Accélérateur National d'Ions Lourds, BP 55027, F-14076 Caen, France
^gResearch Center for Nuclear Physics, Osaka University, Ibaraki, Osaka 567-0047, Japan
^hComisión Chilena de Energía Nuclear, Casilla 188-D, Santiago, Chile
ⁱVakgroep Subatomaire en Stralingsfysica, Universiteit Gent, B-9000 Gent, Belgium
^jPhysics Division, Argonne National Laboratory, Argonne, Illinois 60439, USA