Beta-decay spectroscopy towards the r-process path

<u>G. Benzoni</u>¹, A.I. Morales¹, A. Bracco^{1,2}, F. Camera^{1,2}, F.C.L. Crespi^{1,2}, S. Leoni^{1,2},
B. Million^{1,2}, R. Nicolini^{1,2}, O. Wieland¹, J.J. Valiente-Dobón³A. Gottardo^{3,4}, A. Gadea⁵,
S. Lunardi^{4,6}, D. Bazzacco⁶, E. Farnea⁶, P. Boutachkov⁷, M. Górska⁷, S. Pietri⁷, H. Weick⁷, H. Geissel⁷,
J. Gerl⁷, H-J. Wollersheim⁷, A.M. Bruce⁸, J. Grebosz⁹, Zs. Podolyak¹⁰, P.H. Regan¹⁰, M. Pfützner¹¹,
J. Benlliure¹², D. Rudolph¹³, for the RISING collaboration

¹ INFN, sezione di Milano, I–20133, Milano, Italy

² Università degli Studi di Milano, I–20133, Milano, Italy

³ INFN, Laboratori Nazionali di Legnaro, Legnaro, Italy

⁴ Università degli Studi di Padova, Padova, Italy

⁵ Instituto de Física Corpuscular, CSIC-Universitat de València, València, Spain

⁶ Istituto Nazionale di Fisica Nucleare, Sezione di Padova, Padova, Italy

⁷ GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany

⁸ School of Computing, Engineering and Mathematics, University of Brighton, Brighton, United Kingdom

⁹ Niewodniczanski Institute of Nuclear Physics, Polish Academy of Science, Krakow, Poland

¹⁰ Department of Physics, University of Surrey, Guildford, United Kingdom

¹¹ Faculty of Physics, University of Warsaw, Warsaw, Poland

¹² Universidad de Santiago de Compostela, Santiago de Compostela, Spain

¹³ Department of Physics, Lund University, Lund, Sweden

Contact email: giovanna.benzoni@mi.infn.it

The study of the structure of neutron-rich Pb isotopes is fundamental to trace the evolution of singleparticle levels and the residual proton-neutron interaction beyond the doubly magic nucleus ²⁰⁸Pb. In addition the study of the β decay of neutron-rich nuclei with N>126 is of primary importance to understand the stellar nucleosynthesis: in this region the r-process path lies far away from accessible nuclei, therefore nuclear models have to extrapolate extensively to predict nucleosynthesis production rates. Currently two main prescriptions are used: the first includes first-forbidden transitions as a perturbation of the allowed Gamow-Teller decays [1], while the second treats the two contributions on the same level [2]. As a result, the predictions of lifetimes and production rates can vary orders of magnitude.

In this contribution we present results from an experiment focused on the investigation of neutronrich Pb-Tl-Bi isotopes, carried out within the *Stopped beam Campaign* of the RISING collaboration at GSI. The nuclei of interest were produced by fragmentation of a relativistic U beam impinging on a thick Be target. The residues were identified in the Fragment Separator and finally stopped in the RISING active stopper [3], consisting of 9 DSSSDs which measured position and time of both implanted ions and β electrons. The γ -ray transitions of the daughter nuclei were registered using the RISING Ge array [4], placed in packed geometry around the active stopper.

 β -decay half-lives of ^{211,212,213}Tl and ^{218,219}Bi are measured for the first time, as well as the deexcitation of their daughter nuclei ^{211,212,213}Pb and ^{218,219}Po. By comparing the newly measured halflives to nuclear models built to describe the r-process the importance of first-forbidden transitions is confirmed. These results are well accounted for by the model in ref. [1], at variance from close-lying N<126 nuclei which are instead overestimated by this approach [5].

This information is complemented by the study of β -delayed γ spectra giving for the first time an insight on the structure of these nuclei.

- [1] P. Möller et al., Phys. Rev. C 67 (2003) 055802;
- [2] I.N. Borzov, Phys. Rev C 67 (2003) 025802;
- [3] R. Kumar et al., Nucl. Instr. Meth. A 598 (2009) 754;
- [4] S. Pietri et al., Nucl. Instr. Meth B 261 (2007) 1079;
- [5] G. Benzoni et al., Phys. Lett. B 715 (2012) 293.