International Nuclear Physics Conference INPC2013: 2-7 June 2013, Firenze, Italy

Neutron single-particle energies near ⁷⁸Ni: low-lying states in ⁷⁹Zn studied via single-nucleon transfer

<u>R. Orlandi</u>^{1,2}, D. Mücher³, G. de Angelis⁴, J. Johansen⁵, A. Jungclaus¹, S. D. Pain⁶, R. Raabe², A. Andreyev⁷, V. Bildstein³, R. Chapman⁷, T. E. Cocolios⁸, J. Diriken², J. Elseviers², R. Gernhäuser³, A. Gottardo⁴, M. Huyse², T. Kröll⁹, R. Krücken³, J. Lane⁷, V. Liberati⁷, K. Nowak³, J. Pakarinen⁸, F. Recchia¹⁰, P. Reiter¹¹, T. Roger³, E. Sahin⁴, J. F. Smith⁷, J. J. Valiente Dobón⁴, P. Van Duppen², M. von Schmidt⁹, N. Warr¹¹, K. Wimmer³

¹ Instituto de Estructura de la Materia – CSIC, E-28006, Madrid, Spain

² I.K.S. Katholieke Universiteit Leuven, B-3001, Heverlee, Belgium

³ Technische Universität München, D-85748, München, Germany

⁴ INFN, Laboratori Nazionali di Legnaro, I-35020, Legnaro, Italy

⁵ Aarhus University, DK-8000, Aarhus, Denmark

⁶ HRIBF, Oak Ridge National Laboratory, TN 37831, Oak Ridge, U.S.A.

University of the West of Scotland, PA1 2BE, Paisley, United Kingdom

⁸ Isolde Group, CERN, CH-1211, Geneva, Switzerland

⁹ Technische Universität Darmstadt, D-64289, Darmstadt, Germany

¹⁰ Dipartimento di Fisica, Università di Padova and INFN, Sezione di Padova, I-35131, Padova, Italy

¹¹ Universität zu Köln, D-50923, Köln, Germany

Contact email: Riccardo.Orlandi@fys.kuleuven.be

Single-particle properties of nuclei neighbouring shell closures constitute one of the most sensitive tests of our understanding of nuclear structure. Especially away from the line of beta stability, the properties and excitations of exotic isotopes provide essential data to refine the current models and interactions, as well as to assess their predictive power. The region of nuclei near ⁷⁸Ni, the doubly-magic nucleus with the largest N/Z ratio, is the focus of considerable experimental and theoretical interest. To date, scarce or no information is available on ⁷⁸Ni or any of its immediate neighbours. Whether ⁷⁸Ni can be considered a doubly-magic spherical nucleus depends on the size of the Z=28 and N=50 shell gaps and the amount of deformation-driving correlations, and contrasting predictions have been proposed [1][2].

⁷⁹Zn is the even-Z, N=49 isotone lying closest to ⁷⁸Ni. Low-lying excited states in ⁷⁹Zn were populated at REX-Isolde via the ⁷⁸Zn(d,p) reaction at 2.83 MeV/u, in inverse kinematics. This reaction yields important information about the N=50 shell gap, since the neutron can be transferred to orbits lying both below and above the gap. The coincident detection of charged particles and gamma rays, permitted by the coupling of the T-REX and Miniball arrays, was of paramount importance for the interpretation of the observed states, most of them populated for the first time. Results on ⁷⁹Zn level scheme and their implications on the size of the N=50 gap will be presented. *** This work was supported by the European Union Seventh Framework Programme through ENSAR, contract no. 262010, by the project MEC Consolider - Ingenio 2010; CDS2007-00042 and by the European Commission through the Marie Curie Actions call FP7-PEOPLE-2011-IEF under Contract No. 300096.

[1] M.-G. Porquet and O. Sorlin, Phys. Rev. C 85 (2012) 014307;
[2] K. Sieja and F. Nowacki, Phys. Rev. C 85 (2012) 051310(R).